import torch
from enum import Enum
import logging
from comfy import model_management
from . ldm . models . autoencoder import AutoencoderKL , AutoencodingEngine
from . ldm . cascade . stage_a import StageA
from . ldm . cascade . stage_c_coder import StageC_coder
import yaml
import comfy . utils
from . import clip_vision
from . import gligen
from . import diffusers_convert
from . import model_base
from . import model_detection
from . import sd1_clip
from . import sd2_clip
from . import sdxl_clip
import comfy . model_patcher
import comfy . lora
import comfy . t2i_adapter . adapter
import comfy . supported_models_base
import comfy . taesd . taesd
def load_model_weights ( model , sd ) :
m , u = model . load_state_dict ( sd , strict = False )
m = set ( m )
unexpected_keys = set ( u )
k = list ( sd . keys ( ) )
for x in k :
if x not in unexpected_keys :
w = sd . pop ( x )
del w
if len ( m ) > 0 :
logging . warning ( " missing {} " . format ( m ) )
return model
def load_clip_weights ( model , sd ) :
k = list ( sd . keys ( ) )
for x in k :
if x . startswith ( " cond_stage_model.transformer. " ) and not x . startswith ( " cond_stage_model.transformer.text_model. " ) :
y = x . replace ( " cond_stage_model.transformer. " , " cond_stage_model.transformer.text_model. " )
sd [ y ] = sd . pop ( x )
if ' cond_stage_model.transformer.text_model.embeddings.position_ids ' in sd :
ids = sd [ ' cond_stage_model.transformer.text_model.embeddings.position_ids ' ]
if ids . dtype == torch . float32 :
sd [ ' cond_stage_model.transformer.text_model.embeddings.position_ids ' ] = ids . round ( )
sd = comfy . utils . clip_text_transformers_convert ( sd , " cond_stage_model.model. " , " cond_stage_model.transformer. " )
return load_model_weights ( model , sd )
def load_lora_for_models ( model , clip , lora , strength_model , strength_clip ) :
key_map = { }
if model is not None :
key_map = comfy . lora . model_lora_keys_unet ( model . model , key_map )
if clip is not None :
key_map = comfy . lora . model_lora_keys_clip ( clip . cond_stage_model , key_map )
loaded = comfy . lora . load_lora ( lora , key_map )
if model is not None :
new_modelpatcher = model . clone ( )
k = new_modelpatcher . add_patches ( loaded , strength_model )
else :
k = ( )
new_modelpatcher = None
if clip is not None :
new_clip = clip . clone ( )
k1 = new_clip . add_patches ( loaded , strength_clip )
else :
k1 = ( )
new_clip = None
k = set ( k )
k1 = set ( k1 )
for x in loaded :
if ( x not in k ) and ( x not in k1 ) :
logging . warning ( " NOT LOADED {} " . format ( x ) )
return ( new_modelpatcher , new_clip )
class CLIP :
def __init__ ( self , target = None , embedding_directory = None , no_init = False ) :
if no_init :
return
params = target . params . copy ( )
clip = target . clip
tokenizer = target . tokenizer
load_device = model_management . text_encoder_device ( )
offload_device = model_management . text_encoder_offload_device ( )
params [ ' device ' ] = offload_device
params [ ' dtype ' ] = model_management . text_encoder_dtype ( load_device )
self . cond_stage_model = clip ( * * ( params ) )
self . tokenizer = tokenizer ( embedding_directory = embedding_directory )
self . patcher = comfy . model_patcher . ModelPatcher ( self . cond_stage_model , load_device = load_device , offload_device = offload_device )
self . layer_idx = None
def clone ( self ) :
n = CLIP ( no_init = True )
n . patcher = self . patcher . clone ( )
n . cond_stage_model = self . cond_stage_model
n . tokenizer = self . tokenizer
n . layer_idx = self . layer_idx
return n
def add_patches ( self , patches , strength_patch = 1.0 , strength_model = 1.0 ) :
return self . patcher . add_patches ( patches , strength_patch , strength_model )
def clip_layer ( self , layer_idx ) :
self . layer_idx = layer_idx
def tokenize ( self , text , return_word_ids = False ) :
return self . tokenizer . tokenize_with_weights ( text , return_word_ids )
def encode_from_tokens ( self , tokens , return_pooled = False ) :
self . cond_stage_model . reset_clip_options ( )
if self . layer_idx is not None :
self . cond_stage_model . set_clip_options ( { " layer " : self . layer_idx } )
if return_pooled == " unprojected " :
self . cond_stage_model . set_clip_options ( { " projected_pooled " : False } )
self . load_model ( )
cond , pooled = self . cond_stage_model . encode_token_weights ( tokens )
if return_pooled :
return cond , pooled
return cond
def encode ( self , text ) :
tokens = self . tokenize ( text )
return self . encode_from_tokens ( tokens )
def load_sd ( self , sd , full_model = False ) :
if full_model :
return self . cond_stage_model . load_state_dict ( sd , strict = False )
else :
return self . cond_stage_model . load_sd ( sd )
def get_sd ( self ) :
return self . cond_stage_model . state_dict ( )
def load_model ( self ) :
model_management . load_model_gpu ( self . patcher )
return self . patcher
def get_key_patches ( self ) :
return self . patcher . get_key_patches ( )
class VAE :
def __init__ ( self , sd = None , device = None , config = None , dtype = None ) :
if ' decoder.up_blocks.0.resnets.0.norm1.weight ' in sd . keys ( ) : #diffusers format
sd = diffusers_convert . convert_vae_state_dict ( sd )
self . memory_used_encode = lambda shape , dtype : ( 1767 * shape [ 2 ] * shape [ 3 ] ) * model_management . dtype_size ( dtype ) #These are for AutoencoderKL and need tweaking (should be lower)
self . memory_used_decode = lambda shape , dtype : ( 2178 * shape [ 2 ] * shape [ 3 ] * 64 ) * model_management . dtype_size ( dtype )
self . downscale_ratio = 8
self . upscale_ratio = 8
self . latent_channels = 4
self . process_input = lambda image : image * 2.0 - 1.0
self . process_output = lambda image : torch . clamp ( ( image + 1.0 ) / 2.0 , min = 0.0 , max = 1.0 )
if config is None :
if " decoder.mid.block_1.mix_factor " in sd :
encoder_config = { ' double_z ' : True , ' z_channels ' : 4 , ' resolution ' : 256 , ' in_channels ' : 3 , ' out_ch ' : 3 , ' ch ' : 128 , ' ch_mult ' : [ 1 , 2 , 4 , 4 ] , ' num_res_blocks ' : 2 , ' attn_resolutions ' : [ ] , ' dropout ' : 0.0 }
decoder_config = encoder_config . copy ( )
decoder_config [ " video_kernel_size " ] = [ 3 , 1 , 1 ]
decoder_config [ " alpha " ] = 0.0
self . first_stage_model = AutoencodingEngine ( regularizer_config = { ' target ' : " comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer " } ,
encoder_config = { ' target ' : " comfy.ldm.modules.diffusionmodules.model.Encoder " , ' params ' : encoder_config } ,
decoder_config = { ' target ' : " comfy.ldm.modules.temporal_ae.VideoDecoder " , ' params ' : decoder_config } )
elif " taesd_decoder.1.weight " in sd :
self . first_stage_model = comfy . taesd . taesd . TAESD ( )
elif " vquantizer.codebook.weight " in sd : #VQGan: stage a of stable cascade
self . first_stage_model = StageA ( )
self . downscale_ratio = 4
self . upscale_ratio = 4
#TODO
#self.memory_used_encode
#self.memory_used_decode
self . process_input = lambda image : image
self . process_output = lambda image : image
elif " backbone.1.0.block.0.1.num_batches_tracked " in sd : #effnet: encoder for stage c latent of stable cascade
self . first_stage_model = StageC_coder ( )
self . downscale_ratio = 32
self . latent_channels = 16
new_sd = { }
for k in sd :
new_sd [ " encoder. {} " . format ( k ) ] = sd [ k ]
sd = new_sd
elif " blocks.11.num_batches_tracked " in sd : #previewer: decoder for stage c latent of stable cascade
self . first_stage_model = StageC_coder ( )
self . latent_channels = 16
new_sd = { }
for k in sd :
new_sd [ " previewer. {} " . format ( k ) ] = sd [ k ]
sd = new_sd
elif " encoder.backbone.1.0.block.0.1.num_batches_tracked " in sd : #combined effnet and previewer for stable cascade
self . first_stage_model = StageC_coder ( )
self . downscale_ratio = 32
self . latent_channels = 16
else :
#default SD1.x/SD2.x VAE parameters
ddconfig = { ' double_z ' : True , ' z_channels ' : 4 , ' resolution ' : 256 , ' in_channels ' : 3 , ' out_ch ' : 3 , ' ch ' : 128 , ' ch_mult ' : [ 1 , 2 , 4 , 4 ] , ' num_res_blocks ' : 2 , ' attn_resolutions ' : [ ] , ' dropout ' : 0.0 }
if ' encoder.down.2.downsample.conv.weight ' not in sd and ' decoder.up.3.upsample.conv.weight ' not in sd : #Stable diffusion x4 upscaler VAE
ddconfig [ ' ch_mult ' ] = [ 1 , 2 , 4 ]
self . downscale_ratio = 4
self . upscale_ratio = 4
self . latent_channels = ddconfig [ ' z_channels ' ] = sd [ " decoder.conv_in.weight " ] . shape [ 1 ]
if ' quant_conv.weight ' in sd :
self . first_stage_model = AutoencoderKL ( ddconfig = ddconfig , embed_dim = 4 )
else :
self . first_stage_model = AutoencodingEngine ( regularizer_config = { ' target ' : " comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer " } ,
encoder_config = { ' target ' : " comfy.ldm.modules.diffusionmodules.model.Encoder " , ' params ' : ddconfig } ,
decoder_config = { ' target ' : " comfy.ldm.modules.diffusionmodules.model.Decoder " , ' params ' : ddconfig } )
else :
self . first_stage_model = AutoencoderKL ( * * ( config [ ' params ' ] ) )
self . first_stage_model = self . first_stage_model . eval ( )
m , u = self . first_stage_model . load_state_dict ( sd , strict = False )
if len ( m ) > 0 :
logging . warning ( " Missing VAE keys {} " . format ( m ) )
if len ( u ) > 0 :
logging . debug ( " Leftover VAE keys {} " . format ( u ) )
if device is None :
device = model_management . vae_device ( )
self . device = device
offload_device = model_management . vae_offload_device ( )
if dtype is None :
dtype = model_management . vae_dtype ( )
self . vae_dtype = dtype
self . first_stage_model . to ( self . vae_dtype )
self . output_device = model_management . intermediate_device ( )
self . patcher = comfy . model_patcher . ModelPatcher ( self . first_stage_model , load_device = self . device , offload_device = offload_device )
def vae_encode_crop_pixels ( self , pixels ) :
x = ( pixels . shape [ 1 ] / / self . downscale_ratio ) * self . downscale_ratio
y = ( pixels . shape [ 2 ] / / self . downscale_ratio ) * self . downscale_ratio
if pixels . shape [ 1 ] != x or pixels . shape [ 2 ] != y :
x_offset = ( pixels . shape [ 1 ] % self . downscale_ratio ) / / 2
y_offset = ( pixels . shape [ 2 ] % self . downscale_ratio ) / / 2
pixels = pixels [ : , x_offset : x + x_offset , y_offset : y + y_offset , : ]
return pixels
def decode_tiled_ ( self , samples , tile_x = 64 , tile_y = 64 , overlap = 16 ) :
steps = samples . shape [ 0 ] * comfy . utils . get_tiled_scale_steps ( samples . shape [ 3 ] , samples . shape [ 2 ] , tile_x , tile_y , overlap )
steps + = samples . shape [ 0 ] * comfy . utils . get_tiled_scale_steps ( samples . shape [ 3 ] , samples . shape [ 2 ] , tile_x / / 2 , tile_y * 2 , overlap )
steps + = samples . shape [ 0 ] * comfy . utils . get_tiled_scale_steps ( samples . shape [ 3 ] , samples . shape [ 2 ] , tile_x * 2 , tile_y / / 2 , overlap )
pbar = comfy . utils . ProgressBar ( steps )
decode_fn = lambda a : self . first_stage_model . decode ( a . to ( self . vae_dtype ) . to ( self . device ) ) . float ( )
output = self . process_output (
( comfy . utils . tiled_scale ( samples , decode_fn , tile_x / / 2 , tile_y * 2 , overlap , upscale_amount = self . upscale_ratio , output_device = self . output_device , pbar = pbar ) +
comfy . utils . tiled_scale ( samples , decode_fn , tile_x * 2 , tile_y / / 2 , overlap , upscale_amount = self . upscale_ratio , output_device = self . output_device , pbar = pbar ) +
comfy . utils . tiled_scale ( samples , decode_fn , tile_x , tile_y , overlap , upscale_amount = self . upscale_ratio , output_device = self . output_device , pbar = pbar ) )
/ 3.0 )
return output
def encode_tiled_ ( self , pixel_samples , tile_x = 512 , tile_y = 512 , overlap = 64 ) :
steps = pixel_samples . shape [ 0 ] * comfy . utils . get_tiled_scale_steps ( pixel_samples . shape [ 3 ] , pixel_samples . shape [ 2 ] , tile_x , tile_y , overlap )
steps + = pixel_samples . shape [ 0 ] * comfy . utils . get_tiled_scale_steps ( pixel_samples . shape [ 3 ] , pixel_samples . shape [ 2 ] , tile_x / / 2 , tile_y * 2 , overlap )
steps + = pixel_samples . shape [ 0 ] * comfy . utils . get_tiled_scale_steps ( pixel_samples . shape [ 3 ] , pixel_samples . shape [ 2 ] , tile_x * 2 , tile_y / / 2 , overlap )
pbar = comfy . utils . ProgressBar ( steps )
encode_fn = lambda a : self . first_stage_model . encode ( ( self . process_input ( a ) ) . to ( self . vae_dtype ) . to ( self . device ) ) . float ( )
samples = comfy . utils . tiled_scale ( pixel_samples , encode_fn , tile_x , tile_y , overlap , upscale_amount = ( 1 / self . downscale_ratio ) , out_channels = self . latent_channels , output_device = self . output_device , pbar = pbar )
samples + = comfy . utils . tiled_scale ( pixel_samples , encode_fn , tile_x * 2 , tile_y / / 2 , overlap , upscale_amount = ( 1 / self . downscale_ratio ) , out_channels = self . latent_channels , output_device = self . output_device , pbar = pbar )
samples + = comfy . utils . tiled_scale ( pixel_samples , encode_fn , tile_x / / 2 , tile_y * 2 , overlap , upscale_amount = ( 1 / self . downscale_ratio ) , out_channels = self . latent_channels , output_device = self . output_device , pbar = pbar )
samples / = 3.0
return samples
def decode ( self , samples_in ) :
try :
memory_used = self . memory_used_decode ( samples_in . shape , self . vae_dtype )
model_management . load_models_gpu ( [ self . patcher ] , memory_required = memory_used )
free_memory = model_management . get_free_memory ( self . device )
batch_number = int ( free_memory / memory_used )
batch_number = max ( 1 , batch_number )
pixel_samples = torch . empty ( ( samples_in . shape [ 0 ] , 3 , round ( samples_in . shape [ 2 ] * self . upscale_ratio ) , round ( samples_in . shape [ 3 ] * self . upscale_ratio ) ) , device = self . output_device )
for x in range ( 0 , samples_in . shape [ 0 ] , batch_number ) :
samples = samples_in [ x : x + batch_number ] . to ( self . vae_dtype ) . to ( self . device )
pixel_samples [ x : x + batch_number ] = self . process_output ( self . first_stage_model . decode ( samples ) . to ( self . output_device ) . float ( ) )
except model_management . OOM_EXCEPTION as e :
logging . warning ( " Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding. " )
pixel_samples = self . decode_tiled_ ( samples_in )
pixel_samples = pixel_samples . to ( self . output_device ) . movedim ( 1 , - 1 )
return pixel_samples
def decode_tiled ( self , samples , tile_x = 64 , tile_y = 64 , overlap = 16 ) :
model_management . load_model_gpu ( self . patcher )
output = self . decode_tiled_ ( samples , tile_x , tile_y , overlap )
return output . movedim ( 1 , - 1 )
def encode ( self , pixel_samples ) :
pixel_samples = self . vae_encode_crop_pixels ( pixel_samples )
pixel_samples = pixel_samples . movedim ( - 1 , 1 )
try :
memory_used = self . memory_used_encode ( pixel_samples . shape , self . vae_dtype )
model_management . load_models_gpu ( [ self . patcher ] , memory_required = memory_used )
free_memory = model_management . get_free_memory ( self . device )
batch_number = int ( free_memory / memory_used )
batch_number = max ( 1 , batch_number )
samples = torch . empty ( ( pixel_samples . shape [ 0 ] , self . latent_channels , round ( pixel_samples . shape [ 2 ] / / self . downscale_ratio ) , round ( pixel_samples . shape [ 3 ] / / self . downscale_ratio ) ) , device = self . output_device )
for x in range ( 0 , pixel_samples . shape [ 0 ] , batch_number ) :
pixels_in = self . process_input ( pixel_samples [ x : x + batch_number ] ) . to ( self . vae_dtype ) . to ( self . device )
samples [ x : x + batch_number ] = self . first_stage_model . encode ( pixels_in ) . to ( self . output_device ) . float ( )
except model_management . OOM_EXCEPTION as e :
logging . warning ( " Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding. " )
samples = self . encode_tiled_ ( pixel_samples )
return samples
def encode_tiled ( self , pixel_samples , tile_x = 512 , tile_y = 512 , overlap = 64 ) :
pixel_samples = self . vae_encode_crop_pixels ( pixel_samples )
model_management . load_model_gpu ( self . patcher )
pixel_samples = pixel_samples . movedim ( - 1 , 1 )
samples = self . encode_tiled_ ( pixel_samples , tile_x = tile_x , tile_y = tile_y , overlap = overlap )
return samples
def get_sd ( self ) :
return self . first_stage_model . state_dict ( )
class StyleModel :
def __init__ ( self , model , device = " cpu " ) :
self . model = model
def get_cond ( self , input ) :
return self . model ( input . last_hidden_state )
def load_style_model ( ckpt_path ) :
model_data = comfy . utils . load_torch_file ( ckpt_path , safe_load = True )
keys = model_data . keys ( )
if " style_embedding " in keys :
model = comfy . t2i_adapter . adapter . StyleAdapter ( width = 1024 , context_dim = 768 , num_head = 8 , n_layes = 3 , num_token = 8 )
else :
raise Exception ( " invalid style model {} " . format ( ckpt_path ) )
model . load_state_dict ( model_data )
return StyleModel ( model )
class CLIPType ( Enum ) :
STABLE_DIFFUSION = 1
STABLE_CASCADE = 2
def load_clip ( ckpt_paths , embedding_directory = None , clip_type = CLIPType . STABLE_DIFFUSION ) :
clip_data = [ ]
for p in ckpt_paths :
clip_data . append ( comfy . utils . load_torch_file ( p , safe_load = True ) )
class EmptyClass :
pass
for i in range ( len ( clip_data ) ) :
if " transformer.resblocks.0.ln_1.weight " in clip_data [ i ] :
clip_data [ i ] = comfy . utils . clip_text_transformers_convert ( clip_data [ i ] , " " , " " )
else :
if " text_projection " in clip_data [ i ] :
clip_data [ i ] [ " text_projection.weight " ] = clip_data [ i ] [ " text_projection " ] . transpose ( 0 , 1 ) #old models saved with the CLIPSave node
clip_target = EmptyClass ( )
clip_target . params = { }
if len ( clip_data ) == 1 :
if " text_model.encoder.layers.30.mlp.fc1.weight " in clip_data [ 0 ] :
if clip_type == CLIPType . STABLE_CASCADE :
clip_target . clip = sdxl_clip . StableCascadeClipModel
clip_target . tokenizer = sdxl_clip . StableCascadeTokenizer
else :
clip_target . clip = sdxl_clip . SDXLRefinerClipModel
clip_target . tokenizer = sdxl_clip . SDXLTokenizer
elif " text_model.encoder.layers.22.mlp.fc1.weight " in clip_data [ 0 ] :
clip_target . clip = sd2_clip . SD2ClipModel
clip_target . tokenizer = sd2_clip . SD2Tokenizer
else :
clip_target . clip = sd1_clip . SD1ClipModel
clip_target . tokenizer = sd1_clip . SD1Tokenizer
else :
clip_target . clip = sdxl_clip . SDXLClipModel
clip_target . tokenizer = sdxl_clip . SDXLTokenizer
clip = CLIP ( clip_target , embedding_directory = embedding_directory )
for c in clip_data :
m , u = clip . load_sd ( c )
if len ( m ) > 0 :
logging . warning ( " clip missing: {} " . format ( m ) )
if len ( u ) > 0 :
logging . debug ( " clip unexpected: {} " . format ( u ) )
return clip
def load_gligen ( ckpt_path ) :
data = comfy . utils . load_torch_file ( ckpt_path , safe_load = True )
model = gligen . load_gligen ( data )
if model_management . should_use_fp16 ( ) :
model = model . half ( )
return comfy . model_patcher . ModelPatcher ( model , load_device = model_management . get_torch_device ( ) , offload_device = model_management . unet_offload_device ( ) )
def load_checkpoint ( config_path = None , ckpt_path = None , output_vae = True , output_clip = True , embedding_directory = None , state_dict = None , config = None ) :
#TODO: this function is a mess and should be removed eventually
if config is None :
with open ( config_path , ' r ' ) as stream :
config = yaml . safe_load ( stream )
model_config_params = config [ ' model ' ] [ ' params ' ]
clip_config = model_config_params [ ' cond_stage_config ' ]
scale_factor = model_config_params [ ' scale_factor ' ]
vae_config = model_config_params [ ' first_stage_config ' ]
fp16 = False
if " unet_config " in model_config_params :
if " params " in model_config_params [ " unet_config " ] :
unet_config = model_config_params [ " unet_config " ] [ " params " ]
if " use_fp16 " in unet_config :
fp16 = unet_config . pop ( " use_fp16 " )
if fp16 :
unet_config [ " dtype " ] = torch . float16
noise_aug_config = None
if " noise_aug_config " in model_config_params :
noise_aug_config = model_config_params [ " noise_aug_config " ]
model_type = model_base . ModelType . EPS
if " parameterization " in model_config_params :
if model_config_params [ " parameterization " ] == " v " :
model_type = model_base . ModelType . V_PREDICTION
clip = None
vae = None
class WeightsLoader ( torch . nn . Module ) :
pass
if state_dict is None :
state_dict = comfy . utils . load_torch_file ( ckpt_path )
class EmptyClass :
pass
model_config = comfy . supported_models_base . BASE ( { } )
from . import latent_formats
model_config . latent_format = latent_formats . SD15 ( scale_factor = scale_factor )
model_config . unet_config = model_detection . convert_config ( unet_config )
if config [ ' model ' ] [ " target " ] . endswith ( " ImageEmbeddingConditionedLatentDiffusion " ) :
model = model_base . SD21UNCLIP ( model_config , noise_aug_config [ " params " ] , model_type = model_type )
else :
model = model_base . BaseModel ( model_config , model_type = model_type )
if config [ ' model ' ] [ " target " ] . endswith ( " LatentInpaintDiffusion " ) :
model . set_inpaint ( )
if fp16 :
model = model . half ( )
offload_device = model_management . unet_offload_device ( )
model = model . to ( offload_device )
model . load_model_weights ( state_dict , " model.diffusion_model. " )
if output_vae :
vae_sd = comfy . utils . state_dict_prefix_replace ( state_dict , { " first_stage_model. " : " " } , filter_keys = True )
vae = VAE ( sd = vae_sd , config = vae_config )
if output_clip :
w = WeightsLoader ( )
clip_target = EmptyClass ( )
clip_target . params = clip_config . get ( " params " , { } )
if clip_config [ " target " ] . endswith ( " FrozenOpenCLIPEmbedder " ) :
clip_target . clip = sd2_clip . SD2ClipModel
clip_target . tokenizer = sd2_clip . SD2Tokenizer
clip = CLIP ( clip_target , embedding_directory = embedding_directory )
w . cond_stage_model = clip . cond_stage_model . clip_h
elif clip_config [ " target " ] . endswith ( " FrozenCLIPEmbedder " ) :
clip_target . clip = sd1_clip . SD1ClipModel
clip_target . tokenizer = sd1_clip . SD1Tokenizer
clip = CLIP ( clip_target , embedding_directory = embedding_directory )
w . cond_stage_model = clip . cond_stage_model . clip_l
load_clip_weights ( w , state_dict )
return ( comfy . model_patcher . ModelPatcher ( model , load_device = model_management . get_torch_device ( ) , offload_device = offload_device ) , clip , vae )
def load_checkpoint_guess_config ( ckpt_path , output_vae = True , output_clip = True , output_clipvision = False , embedding_directory = None , output_model = True ) :
sd = comfy . utils . load_torch_file ( ckpt_path )
sd_keys = sd . keys ( )
clip = None
clipvision = None
vae = None
model = None
model_patcher = None
clip_target = None
parameters = comfy . utils . calculate_parameters ( sd , " model.diffusion_model. " )
load_device = model_management . get_torch_device ( )
model_config = model_detection . model_config_from_unet ( sd , " model.diffusion_model. " )
unet_dtype = model_management . unet_dtype ( model_params = parameters , supported_dtypes = model_config . supported_inference_dtypes )
manual_cast_dtype = model_management . unet_manual_cast ( unet_dtype , load_device , model_config . supported_inference_dtypes )
model_config . set_inference_dtype ( unet_dtype , manual_cast_dtype )
if model_config is None :
raise RuntimeError ( " ERROR: Could not detect model type of: {} " . format ( ckpt_path ) )
if model_config . clip_vision_prefix is not None :
if output_clipvision :
clipvision = clip_vision . load_clipvision_from_sd ( sd , model_config . clip_vision_prefix , True )
if output_model :
inital_load_device = model_management . unet_inital_load_device ( parameters , unet_dtype )
offload_device = model_management . unet_offload_device ( )
model = model_config . get_model ( sd , " model.diffusion_model. " , device = inital_load_device )
model . load_model_weights ( sd , " model.diffusion_model. " )
if output_vae :
vae_sd = comfy . utils . state_dict_prefix_replace ( sd , { k : " " for k in model_config . vae_key_prefix } , filter_keys = True )
vae_sd = model_config . process_vae_state_dict ( vae_sd )
vae = VAE ( sd = vae_sd )
if output_clip :
clip_target = model_config . clip_target ( )
if clip_target is not None :
clip_sd = model_config . process_clip_state_dict ( sd )
if len ( clip_sd ) > 0 :
clip = CLIP ( clip_target , embedding_directory = embedding_directory )
m , u = clip . load_sd ( clip_sd , full_model = True )
if len ( m ) > 0 :
logging . warning ( " clip missing: {} " . format ( m ) )
if len ( u ) > 0 :
logging . debug ( " clip unexpected {} : " . format ( u ) )
else :
logging . warning ( " no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded. " )
left_over = sd . keys ( )
if len ( left_over ) > 0 :
logging . debug ( " left over keys: {} " . format ( left_over ) )
if output_model :
model_patcher = comfy . model_patcher . ModelPatcher ( model , load_device = load_device , offload_device = model_management . unet_offload_device ( ) , current_device = inital_load_device )
if inital_load_device != torch . device ( " cpu " ) :
logging . info ( " loaded straight to GPU " )
model_management . load_model_gpu ( model_patcher )
return ( model_patcher , clip , vae , clipvision )
def load_unet_state_dict ( sd ) : #load unet in diffusers format
parameters = comfy . utils . calculate_parameters ( sd )
unet_dtype = model_management . unet_dtype ( model_params = parameters )
load_device = model_management . get_torch_device ( )
if " input_blocks.0.0.weight " in sd or ' clf.1.weight ' in sd : #ldm or stable cascade
model_config = model_detection . model_config_from_unet ( sd , " " )
if model_config is None :
return None
new_sd = sd
else : #diffusers
model_config = model_detection . model_config_from_diffusers_unet ( sd )
if model_config is None :
return None
diffusers_keys = comfy . utils . unet_to_diffusers ( model_config . unet_config )
new_sd = { }
for k in diffusers_keys :
if k in sd :
new_sd [ diffusers_keys [ k ] ] = sd . pop ( k )
else :
logging . warning ( " {} {} " . format ( diffusers_keys [ k ] , k ) )
offload_device = model_management . unet_offload_device ( )
unet_dtype = model_management . unet_dtype ( model_params = parameters , supported_dtypes = model_config . supported_inference_dtypes )
manual_cast_dtype = model_management . unet_manual_cast ( unet_dtype , load_device , model_config . supported_inference_dtypes )
model_config . set_inference_dtype ( unet_dtype , manual_cast_dtype )
model = model_config . get_model ( new_sd , " " )
model = model . to ( offload_device )
model . load_model_weights ( new_sd , " " )
left_over = sd . keys ( )
if len ( left_over ) > 0 :
logging . info ( " left over keys in unet: {} " . format ( left_over ) )
return comfy . model_patcher . ModelPatcher ( model , load_device = load_device , offload_device = offload_device )
def load_unet ( unet_path ) :
sd = comfy . utils . load_torch_file ( unet_path )
model = load_unet_state_dict ( sd )
if model is None :
logging . error ( " ERROR UNSUPPORTED UNET {} " . format ( unet_path ) )
raise RuntimeError ( " ERROR: Could not detect model type of: {} " . format ( unet_path ) )
return model
def save_checkpoint ( output_path , model , clip = None , vae = None , clip_vision = None , metadata = None , extra_keys = { } ) :
clip_sd = None
load_models = [ model ]
if clip is not None :
load_models . append ( clip . load_model ( ) )
clip_sd = clip . get_sd ( )
model_management . load_models_gpu ( load_models )
clip_vision_sd = clip_vision . get_sd ( ) if clip_vision is not None else None
sd = model . model . state_dict_for_saving ( clip_sd , vae . get_sd ( ) , clip_vision_sd )
for k in extra_keys :
sd [ k ] = extra_keys [ k ]
comfy . utils . save_torch_file ( sd , output_path , metadata = metadata )