|
|
|
@ -187,10 +187,12 @@ class VAE:
|
|
|
|
|
if device is None: |
|
|
|
|
device = model_management.vae_device() |
|
|
|
|
self.device = device |
|
|
|
|
self.offload_device = model_management.vae_offload_device() |
|
|
|
|
offload_device = model_management.vae_offload_device() |
|
|
|
|
self.vae_dtype = model_management.vae_dtype() |
|
|
|
|
self.first_stage_model.to(self.vae_dtype) |
|
|
|
|
|
|
|
|
|
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) |
|
|
|
|
|
|
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
|
|
|
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) |
|
|
|
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
|
|
@ -219,10 +221,9 @@ class VAE:
|
|
|
|
|
return samples |
|
|
|
|
|
|
|
|
|
def decode(self, samples_in): |
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
|
try: |
|
|
|
|
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) |
|
|
|
|
model_management.free_memory(memory_used, self.device) |
|
|
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
|
|
|
free_memory = model_management.get_free_memory(self.device) |
|
|
|
|
batch_number = int(free_memory / memory_used) |
|
|
|
|
batch_number = max(1, batch_number) |
|
|
|
@ -235,22 +236,19 @@ class VAE:
|
|
|
|
|
print("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") |
|
|
|
|
pixel_samples = self.decode_tiled_(samples_in) |
|
|
|
|
|
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
|
|
|
pixel_samples = pixel_samples.cpu().movedim(1,-1) |
|
|
|
|
return pixel_samples |
|
|
|
|
|
|
|
|
|
def decode_tiled(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
|
model_management.load_model_gpu(self.patcher) |
|
|
|
|
output = self.decode_tiled_(samples, tile_x, tile_y, overlap) |
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
|
|
|
return output.movedim(1,-1) |
|
|
|
|
|
|
|
|
|
def encode(self, pixel_samples): |
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
|
|
|
try: |
|
|
|
|
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) |
|
|
|
|
model_management.free_memory(memory_used, self.device) |
|
|
|
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
|
|
|
free_memory = model_management.get_free_memory(self.device) |
|
|
|
|
batch_number = int(free_memory / memory_used) |
|
|
|
|
batch_number = max(1, batch_number) |
|
|
|
@ -263,14 +261,12 @@ class VAE:
|
|
|
|
|
print("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") |
|
|
|
|
samples = self.encode_tiled_(pixel_samples) |
|
|
|
|
|
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
|
|
|
return samples |
|
|
|
|
|
|
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.device) |
|
|
|
|
model_management.load_model_gpu(self.patcher) |
|
|
|
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
|
|
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) |
|
|
|
|
self.first_stage_model = self.first_stage_model.to(self.offload_device) |
|
|
|
|
return samples |
|
|
|
|
|
|
|
|
|
def get_sd(self): |
|
|
|
|