Browse Source

Add --cpu to use the cpu for inference.

pull/49/head^2
comfyanonymous 2 years ago
parent
commit
afff30fc0a
  1. 16
      comfy/model_management.py
  2. 2
      comfy/samplers.py
  3. 16
      comfy/sd.py
  4. 1
      main.py
  5. 22
      nodes.py

16
comfy/model_management.py

@ -31,6 +31,8 @@ try:
except:
pass
if "--cpu" in sys.argv:
vram_state = CPU
if "--lowvram" in sys.argv:
set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
@ -118,6 +120,8 @@ def load_model_gpu(model):
def load_controlnet_gpu(models):
global current_gpu_controlnets
global vram_state
if vram_state == CPU:
return
if vram_state == LOW_VRAM or vram_state == NO_VRAM:
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
@ -144,10 +148,20 @@ def unload_if_low_vram(model):
return model.cpu()
return model
def get_torch_device():
if vram_state == CPU:
return torch.device("cpu")
else:
return torch.cuda.current_device()
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
return "cuda"
def get_free_memory(dev=None, torch_free_too=False):
if dev is None:
dev = torch.cuda.current_device()
dev = get_torch_device()
if hasattr(dev, 'type') and dev.type == 'cpu':
mem_free_total = psutil.virtual_memory().available

2
comfy/samplers.py

@ -438,7 +438,7 @@ class KSampler:
else:
max_denoise = True
with precision_scope(self.device):
with precision_scope(model_management.get_autocast_device(self.device)):
if self.sampler == "uni_pc":
samples = uni_pc.sample_unipc(self.model_wrap, noise, latent_image, sigmas, sampling_function=sampling_function, max_denoise=max_denoise, extra_args=extra_args, noise_mask=denoise_mask)
elif self.sampler == "uni_pc_bh2":

16
comfy/sd.py

@ -299,7 +299,7 @@ class CLIP:
return cond
class VAE:
def __init__(self, ckpt_path=None, scale_factor=0.18215, device="cuda", config=None):
def __init__(self, ckpt_path=None, scale_factor=0.18215, device=None, config=None):
if config is None:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@ -308,6 +308,8 @@ class VAE:
self.first_stage_model = AutoencoderKL(**(config['params']), ckpt_path=ckpt_path)
self.first_stage_model = self.first_stage_model.eval()
self.scale_factor = scale_factor
if device is None:
device = model_management.get_torch_device()
self.device = device
def decode(self, samples):
@ -381,11 +383,13 @@ def resize_image_to(tensor, target_latent_tensor, batched_number):
return torch.cat([tensor] * batched_number, dim=0)
class ControlNet:
def __init__(self, control_model, device="cuda"):
def __init__(self, control_model, device=None):
self.control_model = control_model
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
if device is None:
device = model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
@ -406,7 +410,7 @@ class ControlNet:
else:
precision_scope = contextlib.nullcontext
with precision_scope(self.device):
with precision_scope(model_management.get_autocast_device(self.device)):
self.control_model = model_management.load_if_low_vram(self.control_model)
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
self.control_model = model_management.unload_if_low_vram(self.control_model)
@ -481,7 +485,7 @@ def load_controlnet(ckpt_path, model=None):
context_dim = controlnet_data[key].shape[1]
use_fp16 = False
if controlnet_data[key].dtype == torch.float16:
if model_management.should_use_fp16() and controlnet_data[key].dtype == torch.float16:
use_fp16 = True
control_model = cldm.ControlNet(image_size=32,
@ -527,10 +531,12 @@ def load_controlnet(ckpt_path, model=None):
return control
class T2IAdapter:
def __init__(self, t2i_model, channels_in, device="cuda"):
def __init__(self, t2i_model, channels_in, device=None):
self.t2i_model = t2i_model
self.channels_in = channels_in
self.strength = 1.0
if device is None:
device = model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
self.control_input = None

1
main.py

@ -24,6 +24,7 @@ if __name__ == "__main__":
print("\t--lowvram\t\t\tSplit the unet in parts to use less vram.")
print("\t--novram\t\t\tWhen lowvram isn't enough.")
print()
print("\t--cpu\t\t\tTo use the CPU for everything (slow).")
exit()
if '--dont-upcast-attention' in sys.argv:

22
nodes.py

@ -628,9 +628,10 @@ class SetLatentNoiseMask:
return (s,)
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
latent_image = latent["samples"]
noise_mask = None
device = model_management.get_torch_device()
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
@ -646,12 +647,9 @@ def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, po
noise_mask = noise_mask.to(device)
real_model = None
if device != "cpu":
model_management.load_model_gpu(model)
real_model = model.model
else:
#TODO: cpu support
real_model = model.patch_model()
model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
@ -697,9 +695,6 @@ def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, po
return (out, )
class KSampler:
def __init__(self, device="cuda"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required":
@ -721,12 +716,9 @@ class KSampler:
CATEGORY = "sampling"
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
class KSamplerAdvanced:
def __init__(self, device="cuda"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required":
@ -757,7 +749,7 @@ class KSamplerAdvanced:
disable_noise = False
if add_noise == "disable":
disable_noise = True
return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
class SaveImage:
def __init__(self):

Loading…
Cancel
Save