|
|
|
@ -2,67 +2,66 @@ import torch
|
|
|
|
|
# import pytorch_lightning as pl |
|
|
|
|
import torch.nn.functional as F |
|
|
|
|
from contextlib import contextmanager |
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
|
|
|
|
from comfy.ldm.modules.diffusionmodules.model import Encoder, Decoder |
|
|
|
|
from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution |
|
|
|
|
|
|
|
|
|
from comfy.ldm.util import instantiate_from_config |
|
|
|
|
from comfy.ldm.modules.ema import LitEma |
|
|
|
|
|
|
|
|
|
# class AutoencoderKL(pl.LightningModule): |
|
|
|
|
class AutoencoderKL(torch.nn.Module): |
|
|
|
|
def __init__(self, |
|
|
|
|
ddconfig, |
|
|
|
|
lossconfig, |
|
|
|
|
embed_dim, |
|
|
|
|
ckpt_path=None, |
|
|
|
|
ignore_keys=[], |
|
|
|
|
image_key="image", |
|
|
|
|
colorize_nlabels=None, |
|
|
|
|
monitor=None, |
|
|
|
|
ema_decay=None, |
|
|
|
|
learn_logvar=False |
|
|
|
|
): |
|
|
|
|
class DiagonalGaussianRegularizer(torch.nn.Module): |
|
|
|
|
def __init__(self, sample: bool = True): |
|
|
|
|
super().__init__() |
|
|
|
|
self.learn_logvar = learn_logvar |
|
|
|
|
self.image_key = image_key |
|
|
|
|
self.encoder = Encoder(**ddconfig) |
|
|
|
|
self.decoder = Decoder(**ddconfig) |
|
|
|
|
self.loss = instantiate_from_config(lossconfig) |
|
|
|
|
assert ddconfig["double_z"] |
|
|
|
|
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) |
|
|
|
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
|
|
|
self.embed_dim = embed_dim |
|
|
|
|
if colorize_nlabels is not None: |
|
|
|
|
assert type(colorize_nlabels)==int |
|
|
|
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) |
|
|
|
|
self.sample = sample |
|
|
|
|
|
|
|
|
|
def get_trainable_parameters(self) -> Any: |
|
|
|
|
yield from () |
|
|
|
|
|
|
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: |
|
|
|
|
log = dict() |
|
|
|
|
posterior = DiagonalGaussianDistribution(z) |
|
|
|
|
if self.sample: |
|
|
|
|
z = posterior.sample() |
|
|
|
|
else: |
|
|
|
|
z = posterior.mode() |
|
|
|
|
kl_loss = posterior.kl() |
|
|
|
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] |
|
|
|
|
log["kl_loss"] = kl_loss |
|
|
|
|
return z, log |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AbstractAutoencoder(torch.nn.Module): |
|
|
|
|
""" |
|
|
|
|
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, |
|
|
|
|
unCLIP models, etc. Hence, it is fairly general, and specific features |
|
|
|
|
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses. |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
def __init__( |
|
|
|
|
self, |
|
|
|
|
ema_decay: Union[None, float] = None, |
|
|
|
|
monitor: Union[None, str] = None, |
|
|
|
|
input_key: str = "jpg", |
|
|
|
|
**kwargs, |
|
|
|
|
): |
|
|
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
self.input_key = input_key |
|
|
|
|
self.use_ema = ema_decay is not None |
|
|
|
|
if monitor is not None: |
|
|
|
|
self.monitor = monitor |
|
|
|
|
|
|
|
|
|
self.use_ema = ema_decay is not None |
|
|
|
|
if self.use_ema: |
|
|
|
|
self.ema_decay = ema_decay |
|
|
|
|
assert 0. < ema_decay < 1. |
|
|
|
|
self.model_ema = LitEma(self, decay=ema_decay) |
|
|
|
|
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
|
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
|
|
|
|
|
|
if ckpt_path is not None: |
|
|
|
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) |
|
|
|
|
def get_input(self, batch) -> Any: |
|
|
|
|
raise NotImplementedError() |
|
|
|
|
|
|
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()): |
|
|
|
|
if path.lower().endswith(".safetensors"): |
|
|
|
|
import safetensors.torch |
|
|
|
|
sd = safetensors.torch.load_file(path, device="cpu") |
|
|
|
|
else: |
|
|
|
|
sd = torch.load(path, map_location="cpu")["state_dict"] |
|
|
|
|
keys = list(sd.keys()) |
|
|
|
|
for k in keys: |
|
|
|
|
for ik in ignore_keys: |
|
|
|
|
if k.startswith(ik): |
|
|
|
|
print("Deleting key {} from state_dict.".format(k)) |
|
|
|
|
del sd[k] |
|
|
|
|
self.load_state_dict(sd, strict=False) |
|
|
|
|
print(f"Restored from {path}") |
|
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
|
|
|
# for EMA computation |
|
|
|
|
if self.use_ema: |
|
|
|
|
self.model_ema(self) |
|
|
|
|
|
|
|
|
|
@contextmanager |
|
|
|
|
def ema_scope(self, context=None): |
|
|
|
@ -70,154 +69,159 @@ class AutoencoderKL(torch.nn.Module):
|
|
|
|
|
self.model_ema.store(self.parameters()) |
|
|
|
|
self.model_ema.copy_to(self) |
|
|
|
|
if context is not None: |
|
|
|
|
print(f"{context}: Switched to EMA weights") |
|
|
|
|
logpy.info(f"{context}: Switched to EMA weights") |
|
|
|
|
try: |
|
|
|
|
yield None |
|
|
|
|
finally: |
|
|
|
|
if self.use_ema: |
|
|
|
|
self.model_ema.restore(self.parameters()) |
|
|
|
|
if context is not None: |
|
|
|
|
print(f"{context}: Restored training weights") |
|
|
|
|
|
|
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
|
|
|
if self.use_ema: |
|
|
|
|
self.model_ema(self) |
|
|
|
|
|
|
|
|
|
def encode(self, x): |
|
|
|
|
h = self.encoder(x) |
|
|
|
|
moments = self.quant_conv(h) |
|
|
|
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
|
return posterior |
|
|
|
|
|
|
|
|
|
def decode(self, z): |
|
|
|
|
z = self.post_quant_conv(z) |
|
|
|
|
dec = self.decoder(z) |
|
|
|
|
return dec |
|
|
|
|
|
|
|
|
|
def forward(self, input, sample_posterior=True): |
|
|
|
|
posterior = self.encode(input) |
|
|
|
|
if sample_posterior: |
|
|
|
|
z = posterior.sample() |
|
|
|
|
else: |
|
|
|
|
z = posterior.mode() |
|
|
|
|
dec = self.decode(z) |
|
|
|
|
return dec, posterior |
|
|
|
|
|
|
|
|
|
def get_input(self, batch, k): |
|
|
|
|
x = batch[k] |
|
|
|
|
if len(x.shape) == 3: |
|
|
|
|
x = x[..., None] |
|
|
|
|
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() |
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx): |
|
|
|
|
inputs = self.get_input(batch, self.image_key) |
|
|
|
|
reconstructions, posterior = self(inputs) |
|
|
|
|
|
|
|
|
|
if optimizer_idx == 0: |
|
|
|
|
# train encoder+decoder+logvar |
|
|
|
|
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, |
|
|
|
|
last_layer=self.get_last_layer(), split="train") |
|
|
|
|
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) |
|
|
|
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) |
|
|
|
|
return aeloss |
|
|
|
|
|
|
|
|
|
if optimizer_idx == 1: |
|
|
|
|
# train the discriminator |
|
|
|
|
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, |
|
|
|
|
last_layer=self.get_last_layer(), split="train") |
|
|
|
|
|
|
|
|
|
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) |
|
|
|
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) |
|
|
|
|
return discloss |
|
|
|
|
|
|
|
|
|
def validation_step(self, batch, batch_idx): |
|
|
|
|
log_dict = self._validation_step(batch, batch_idx) |
|
|
|
|
with self.ema_scope(): |
|
|
|
|
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") |
|
|
|
|
return log_dict |
|
|
|
|
|
|
|
|
|
def _validation_step(self, batch, batch_idx, postfix=""): |
|
|
|
|
inputs = self.get_input(batch, self.image_key) |
|
|
|
|
reconstructions, posterior = self(inputs) |
|
|
|
|
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, |
|
|
|
|
last_layer=self.get_last_layer(), split="val"+postfix) |
|
|
|
|
|
|
|
|
|
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, |
|
|
|
|
last_layer=self.get_last_layer(), split="val"+postfix) |
|
|
|
|
|
|
|
|
|
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"]) |
|
|
|
|
self.log_dict(log_dict_ae) |
|
|
|
|
self.log_dict(log_dict_disc) |
|
|
|
|
return self.log_dict |
|
|
|
|
|
|
|
|
|
def configure_optimizers(self): |
|
|
|
|
lr = self.learning_rate |
|
|
|
|
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list( |
|
|
|
|
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()) |
|
|
|
|
if self.learn_logvar: |
|
|
|
|
print(f"{self.__class__.__name__}: Learning logvar") |
|
|
|
|
ae_params_list.append(self.loss.logvar) |
|
|
|
|
opt_ae = torch.optim.Adam(ae_params_list, |
|
|
|
|
lr=lr, betas=(0.5, 0.9)) |
|
|
|
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), |
|
|
|
|
lr=lr, betas=(0.5, 0.9)) |
|
|
|
|
return [opt_ae, opt_disc], [] |
|
|
|
|
logpy.info(f"{context}: Restored training weights") |
|
|
|
|
|
|
|
|
|
def encode(self, *args, **kwargs) -> torch.Tensor: |
|
|
|
|
raise NotImplementedError("encode()-method of abstract base class called") |
|
|
|
|
|
|
|
|
|
def decode(self, *args, **kwargs) -> torch.Tensor: |
|
|
|
|
raise NotImplementedError("decode()-method of abstract base class called") |
|
|
|
|
|
|
|
|
|
def instantiate_optimizer_from_config(self, params, lr, cfg): |
|
|
|
|
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") |
|
|
|
|
return get_obj_from_str(cfg["target"])( |
|
|
|
|
params, lr=lr, **cfg.get("params", dict()) |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
def configure_optimizers(self) -> Any: |
|
|
|
|
raise NotImplementedError() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AutoencodingEngine(AbstractAutoencoder): |
|
|
|
|
""" |
|
|
|
|
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL |
|
|
|
|
(we also restore them explicitly as special cases for legacy reasons). |
|
|
|
|
Regularizations such as KL or VQ are moved to the regularizer class. |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
def __init__( |
|
|
|
|
self, |
|
|
|
|
*args, |
|
|
|
|
encoder_config: Dict, |
|
|
|
|
decoder_config: Dict, |
|
|
|
|
regularizer_config: Dict, |
|
|
|
|
**kwargs, |
|
|
|
|
): |
|
|
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) |
|
|
|
|
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) |
|
|
|
|
self.regularization: AbstractRegularizer = instantiate_from_config( |
|
|
|
|
regularizer_config |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
def get_last_layer(self): |
|
|
|
|
return self.decoder.conv_out.weight |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
|
|
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs): |
|
|
|
|
log = dict() |
|
|
|
|
x = self.get_input(batch, self.image_key) |
|
|
|
|
x = x.to(self.device) |
|
|
|
|
if not only_inputs: |
|
|
|
|
xrec, posterior = self(x) |
|
|
|
|
if x.shape[1] > 3: |
|
|
|
|
# colorize with random projection |
|
|
|
|
assert xrec.shape[1] > 3 |
|
|
|
|
x = self.to_rgb(x) |
|
|
|
|
xrec = self.to_rgb(xrec) |
|
|
|
|
log["samples"] = self.decode(torch.randn_like(posterior.sample())) |
|
|
|
|
log["reconstructions"] = xrec |
|
|
|
|
if log_ema or self.use_ema: |
|
|
|
|
with self.ema_scope(): |
|
|
|
|
xrec_ema, posterior_ema = self(x) |
|
|
|
|
if x.shape[1] > 3: |
|
|
|
|
# colorize with random projection |
|
|
|
|
assert xrec_ema.shape[1] > 3 |
|
|
|
|
xrec_ema = self.to_rgb(xrec_ema) |
|
|
|
|
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample())) |
|
|
|
|
log["reconstructions_ema"] = xrec_ema |
|
|
|
|
log["inputs"] = x |
|
|
|
|
return log |
|
|
|
|
|
|
|
|
|
def to_rgb(self, x): |
|
|
|
|
assert self.image_key == "segmentation" |
|
|
|
|
if not hasattr(self, "colorize"): |
|
|
|
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) |
|
|
|
|
x = F.conv2d(x, weight=self.colorize) |
|
|
|
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. |
|
|
|
|
return self.decoder.get_last_layer() |
|
|
|
|
|
|
|
|
|
def encode( |
|
|
|
|
self, |
|
|
|
|
x: torch.Tensor, |
|
|
|
|
return_reg_log: bool = False, |
|
|
|
|
unregularized: bool = False, |
|
|
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: |
|
|
|
|
z = self.encoder(x) |
|
|
|
|
if unregularized: |
|
|
|
|
return z, dict() |
|
|
|
|
z, reg_log = self.regularization(z) |
|
|
|
|
if return_reg_log: |
|
|
|
|
return z, reg_log |
|
|
|
|
return z |
|
|
|
|
|
|
|
|
|
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: |
|
|
|
|
x = self.decoder(z, **kwargs) |
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
def forward( |
|
|
|
|
self, x: torch.Tensor, **additional_decode_kwargs |
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, dict]: |
|
|
|
|
z, reg_log = self.encode(x, return_reg_log=True) |
|
|
|
|
dec = self.decode(z, **additional_decode_kwargs) |
|
|
|
|
return z, dec, reg_log |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AutoencodingEngineLegacy(AutoencodingEngine): |
|
|
|
|
def __init__(self, embed_dim: int, **kwargs): |
|
|
|
|
self.max_batch_size = kwargs.pop("max_batch_size", None) |
|
|
|
|
ddconfig = kwargs.pop("ddconfig") |
|
|
|
|
super().__init__( |
|
|
|
|
encoder_config={ |
|
|
|
|
"target": "comfy.ldm.modules.diffusionmodules.model.Encoder", |
|
|
|
|
"params": ddconfig, |
|
|
|
|
}, |
|
|
|
|
decoder_config={ |
|
|
|
|
"target": "comfy.ldm.modules.diffusionmodules.model.Decoder", |
|
|
|
|
"params": ddconfig, |
|
|
|
|
}, |
|
|
|
|
**kwargs, |
|
|
|
|
) |
|
|
|
|
self.quant_conv = torch.nn.Conv2d( |
|
|
|
|
(1 + ddconfig["double_z"]) * ddconfig["z_channels"], |
|
|
|
|
(1 + ddconfig["double_z"]) * embed_dim, |
|
|
|
|
1, |
|
|
|
|
) |
|
|
|
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
|
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
|
|
|
|
class IdentityFirstStage(torch.nn.Module): |
|
|
|
|
def __init__(self, *args, vq_interface=False, **kwargs): |
|
|
|
|
self.vq_interface = vq_interface |
|
|
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
def encode(self, x, *args, **kwargs): |
|
|
|
|
return x |
|
|
|
|
def get_autoencoder_params(self) -> list: |
|
|
|
|
params = super().get_autoencoder_params() |
|
|
|
|
return params |
|
|
|
|
|
|
|
|
|
def decode(self, x, *args, **kwargs): |
|
|
|
|
return x |
|
|
|
|
def encode( |
|
|
|
|
self, x: torch.Tensor, return_reg_log: bool = False |
|
|
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: |
|
|
|
|
if self.max_batch_size is None: |
|
|
|
|
z = self.encoder(x) |
|
|
|
|
z = self.quant_conv(z) |
|
|
|
|
else: |
|
|
|
|
N = x.shape[0] |
|
|
|
|
bs = self.max_batch_size |
|
|
|
|
n_batches = int(math.ceil(N / bs)) |
|
|
|
|
z = list() |
|
|
|
|
for i_batch in range(n_batches): |
|
|
|
|
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) |
|
|
|
|
z_batch = self.quant_conv(z_batch) |
|
|
|
|
z.append(z_batch) |
|
|
|
|
z = torch.cat(z, 0) |
|
|
|
|
|
|
|
|
|
z, reg_log = self.regularization(z) |
|
|
|
|
if return_reg_log: |
|
|
|
|
return z, reg_log |
|
|
|
|
return z |
|
|
|
|
|
|
|
|
|
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: |
|
|
|
|
if self.max_batch_size is None: |
|
|
|
|
dec = self.post_quant_conv(z) |
|
|
|
|
dec = self.decoder(dec, **decoder_kwargs) |
|
|
|
|
else: |
|
|
|
|
N = z.shape[0] |
|
|
|
|
bs = self.max_batch_size |
|
|
|
|
n_batches = int(math.ceil(N / bs)) |
|
|
|
|
dec = list() |
|
|
|
|
for i_batch in range(n_batches): |
|
|
|
|
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) |
|
|
|
|
dec_batch = self.decoder(dec_batch, **decoder_kwargs) |
|
|
|
|
dec.append(dec_batch) |
|
|
|
|
dec = torch.cat(dec, 0) |
|
|
|
|
|
|
|
|
|
def quantize(self, x, *args, **kwargs): |
|
|
|
|
if self.vq_interface: |
|
|
|
|
return x, None, [None, None, None] |
|
|
|
|
return x |
|
|
|
|
return dec |
|
|
|
|
|
|
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
class AutoencoderKL(AutoencodingEngineLegacy): |
|
|
|
|
def __init__(self, **kwargs): |
|
|
|
|
if "lossconfig" in kwargs: |
|
|
|
|
kwargs["loss_config"] = kwargs.pop("lossconfig") |
|
|
|
|
super().__init__( |
|
|
|
|
regularizer_config={ |
|
|
|
|
"target": ( |
|
|
|
|
"comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer" |
|
|
|
|
) |
|
|
|
|
}, |
|
|
|
|
**kwargs, |
|
|
|
|
) |
|
|
|
|