Browse Source

Some cleanups to how the text encoders are loaded.

pull/2850/head
comfyanonymous 9 months ago
parent
commit
d91f45ef28
  1. 23
      comfy/sd.py
  2. 31
      comfy/supported_models.py
  3. 6
      comfy/supported_models_base.py

23
comfy/sd.py

@ -138,8 +138,11 @@ class CLIP:
tokens = self.tokenize(text)
return self.encode_from_tokens(tokens)
def load_sd(self, sd):
return self.cond_stage_model.load_sd(sd)
def load_sd(self, sd, full_model=False):
if full_model:
return self.cond_stage_model.load_state_dict(sd, strict=False)
else:
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
return self.cond_stage_model.state_dict()
@ -494,9 +497,6 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
parameters = comfy.utils.calculate_parameters(sd, "model.diffusion_model.")
load_device = model_management.get_torch_device()
class WeightsLoader(torch.nn.Module):
pass
model_config = model_detection.model_config_from_unet(sd, "model.diffusion_model.")
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
@ -521,14 +521,17 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
vae = VAE(sd=vae_sd)
if output_clip:
w = WeightsLoader()
clip_target = model_config.clip_target()
if clip_target is not None:
sd = model_config.process_clip_state_dict(sd)
if any(k.startswith('cond_stage_model.') for k in sd):
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
clip = CLIP(clip_target, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_model_weights(w, sd)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
print("clip missing:", m)
if len(u) > 0:
print("clip unexpected:", u)
else:
print("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")

31
comfy/supported_models.py

@ -40,8 +40,8 @@ class SD15(supported_models_base.BASE):
state_dict['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
replace_prefix = {}
replace_prefix["cond_stage_model."] = "cond_stage_model.clip_l."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
replace_prefix["cond_stage_model."] = "clip_l."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
@ -72,10 +72,10 @@ class SD20(supported_models_base.BASE):
def process_clip_state_dict(self, state_dict):
replace_prefix = {}
replace_prefix["conditioner.embedders.0.model."] = "cond_stage_model.model." #SD2 in sgm format
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = utils.transformers_convert(state_dict, "cond_stage_model.model.", "cond_stage_model.clip_h.transformer.text_model.", 24)
replace_prefix["conditioner.embedders.0.model."] = "clip_h." #SD2 in sgm format
replace_prefix["cond_stage_model.model."] = "clip_h."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.transformers_convert(state_dict, "clip_h.", "clip_h.transformer.text_model.", 24)
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
@ -131,11 +131,10 @@ class SDXLRefiner(supported_models_base.BASE):
def process_clip_state_dict(self, state_dict):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.model."] = "clip_g."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.0.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.0.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.0.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
state_dict = utils.transformers_convert(state_dict, "clip_g.", "clip_g.transformer.text_model.", 32)
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict
@ -179,13 +178,13 @@ class SDXL(supported_models_base.BASE):
keys_to_replace = {}
replace_prefix = {}
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "cond_stage_model.clip_l.transformer.text_model"
state_dict = utils.transformers_convert(state_dict, "conditioner.embedders.1.model.", "cond_stage_model.clip_g.transformer.text_model.", 32)
keys_to_replace["conditioner.embedders.1.model.text_projection"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.1.model.text_projection.weight"] = "cond_stage_model.clip_g.text_projection"
keys_to_replace["conditioner.embedders.1.model.logit_scale"] = "cond_stage_model.clip_g.logit_scale"
replace_prefix["conditioner.embedders.0.transformer.text_model"] = "clip_l.transformer.text_model"
replace_prefix["conditioner.embedders.1.model."] = "clip_g."
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=True)
state_dict = utils.transformers_convert(state_dict, "clip_g.", "clip_g.transformer.text_model.", 32)
keys_to_replace["clip_g.text_projection.weight"] = "clip_g.text_projection"
state_dict = utils.state_dict_prefix_replace(state_dict, replace_prefix)
state_dict = utils.state_dict_key_replace(state_dict, keys_to_replace)
return state_dict

6
comfy/supported_models_base.py

@ -22,6 +22,7 @@ class BASE:
sampling_settings = {}
latent_format = latent_formats.LatentFormat
vae_key_prefix = ["first_stage_model."]
text_encoder_key_prefix = ["cond_stage_model."]
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
manual_cast_dtype = None
@ -55,6 +56,7 @@ class BASE:
return out
def process_clip_state_dict(self, state_dict):
state_dict = utils.state_dict_prefix_replace(state_dict, {k: "" for k in self.text_encoder_key_prefix}, filter_keys=True)
return state_dict
def process_unet_state_dict(self, state_dict):
@ -64,7 +66,7 @@ class BASE:
return state_dict
def process_clip_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "cond_stage_model."}
replace_prefix = {"": self.text_encoder_key_prefix[0]}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def process_clip_vision_state_dict_for_saving(self, state_dict):
@ -78,7 +80,7 @@ class BASE:
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def process_vae_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "first_stage_model."}
replace_prefix = {"": self.vae_key_prefix[0]}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
def set_inference_dtype(self, dtype, manual_cast_dtype):

Loading…
Cancel
Save