|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
|
|
import comfy.samplers
|
|
|
|
import math
|
|
|
|
|
|
|
|
def prepare_noise(latent_image, seed, skip=0):
|
|
|
|
"""
|
|
|
|
creates random noise given a latent image and a seed.
|
|
|
|
optional arg skip can be used to skip and discard x number of noise generations for a given seed
|
|
|
|
"""
|
|
|
|
generator = torch.manual_seed(seed)
|
|
|
|
for _ in range(skip):
|
|
|
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
|
|
|
|
return noise
|
|
|
|
|
|
|
|
def prepare_mask(noise_mask, shape, device):
|
|
|
|
"""ensures noise mask is of proper dimensions"""
|
|
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
|
|
|
|
noise_mask = noise_mask.round()
|
|
|
|
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
|
|
|
|
if noise_mask.shape[0] < shape[0]:
|
|
|
|
noise_mask = noise_mask.repeat(math.ceil(shape[0] / noise_mask.shape[0]), 1, 1, 1)[:shape[0]]
|
|
|
|
noise_mask = noise_mask.to(device)
|
|
|
|
return noise_mask
|
|
|
|
|
|
|
|
def broadcast_cond(cond, batch, device):
|
|
|
|
"""broadcasts conditioning to the batch size"""
|
|
|
|
copy = []
|
|
|
|
for p in cond:
|
|
|
|
t = p[0]
|
|
|
|
if t.shape[0] < batch:
|
|
|
|
t = torch.cat([t] * batch)
|
|
|
|
t = t.to(device)
|
|
|
|
copy += [[t] + p[1:]]
|
|
|
|
return copy
|
|
|
|
|
|
|
|
def get_models_from_cond(cond, model_type):
|
|
|
|
models = []
|
|
|
|
for c in cond:
|
|
|
|
if model_type in c[1]:
|
|
|
|
models += [c[1][model_type]]
|
|
|
|
return models
|
|
|
|
|
|
|
|
def load_additional_models(positive, negative):
|
|
|
|
"""loads additional models in positive and negative conditioning"""
|
|
|
|
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")
|
|
|
|
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
|
|
|
|
gligen = [x[1] for x in gligen]
|
|
|
|
models = control_nets + gligen
|
|
|
|
comfy.model_management.load_controlnet_gpu(models)
|
|
|
|
return models
|
|
|
|
|
|
|
|
def cleanup_additional_models(models):
|
|
|
|
"""cleanup additional models that were loaded"""
|
|
|
|
for m in models:
|
|
|
|
m.cleanup()
|
|
|
|
|
|
|
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False):
|
|
|
|
device = comfy.model_management.get_torch_device()
|
|
|
|
|
|
|
|
if noise_mask is not None:
|
|
|
|
noise_mask = prepare_mask(noise_mask, noise.shape, device)
|
|
|
|
|
|
|
|
real_model = None
|
|
|
|
comfy.model_management.load_model_gpu(model)
|
|
|
|
real_model = model.model
|
|
|
|
|
|
|
|
noise = noise.to(device)
|
|
|
|
latent_image = latent_image.to(device)
|
|
|
|
|
|
|
|
positive_copy = broadcast_cond(positive, noise.shape[0], device)
|
|
|
|
negative_copy = broadcast_cond(negative, noise.shape[0], device)
|
|
|
|
|
|
|
|
models = load_additional_models(positive, negative)
|
|
|
|
|
|
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
|
|
|
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar)
|
|
|
|
samples = samples.cpu()
|
|
|
|
|
|
|
|
cleanup_additional_models(models)
|
|
|
|
return samples
|