|
|
|
@ -2,30 +2,25 @@ import torch
|
|
|
|
|
import comfy.model_management |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_noise(latent, seed): |
|
|
|
|
"""creates random noise given a LATENT and a seed""" |
|
|
|
|
latent_image = latent["samples"] |
|
|
|
|
batch_index = 0 |
|
|
|
|
if "batch_index" in latent: |
|
|
|
|
batch_index = latent["batch_index"] |
|
|
|
|
|
|
|
|
|
def prepare_noise(latent_image, seed, skip=0): |
|
|
|
|
""" |
|
|
|
|
creates random noise given a latent image and a seed. |
|
|
|
|
optional arg skip can be used to skip and discard x number of noise generations for a given seed |
|
|
|
|
""" |
|
|
|
|
generator = torch.manual_seed(seed) |
|
|
|
|
for i in range(batch_index): |
|
|
|
|
for _ in range(skip): |
|
|
|
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
|
|
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
|
|
|
|
return noise |
|
|
|
|
|
|
|
|
|
def create_mask(latent, noise): |
|
|
|
|
"""creates a mask for a given LATENT and noise""" |
|
|
|
|
noise_mask = None |
|
|
|
|
def prepare_mask(noise_mask, noise): |
|
|
|
|
"""ensures noise mask is of proper dimensions""" |
|
|
|
|
device = comfy.model_management.get_torch_device() |
|
|
|
|
if "noise_mask" in latent: |
|
|
|
|
noise_mask = latent['noise_mask'] |
|
|
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear") |
|
|
|
|
noise_mask = noise_mask.round() |
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1) |
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[0]) |
|
|
|
|
noise_mask = noise_mask.to(device) |
|
|
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear") |
|
|
|
|
noise_mask = noise_mask.round() |
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1) |
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[0]) |
|
|
|
|
noise_mask = noise_mask.to(device) |
|
|
|
|
return noise_mask |
|
|
|
|
|
|
|
|
|
def broadcast_cond(cond, noise): |
|
|
|
@ -40,22 +35,20 @@ def broadcast_cond(cond, noise):
|
|
|
|
|
copy += [[t] + p[1:]] |
|
|
|
|
return copy |
|
|
|
|
|
|
|
|
|
def load_c_nets(positive, negative): |
|
|
|
|
"""loads control nets in positive and negative conditioning""" |
|
|
|
|
def get_models(cond): |
|
|
|
|
models = [] |
|
|
|
|
for c in cond: |
|
|
|
|
if 'control' in c[1]: |
|
|
|
|
models += [c[1]['control']] |
|
|
|
|
if 'gligen' in c[1]: |
|
|
|
|
models += [c[1]['gligen'][1]] |
|
|
|
|
return models |
|
|
|
|
|
|
|
|
|
return get_models(positive) + get_models(negative) |
|
|
|
|
def get_models_from_cond(cond, model_type): |
|
|
|
|
models = [] |
|
|
|
|
for c in cond: |
|
|
|
|
if model_type in c[1]: |
|
|
|
|
models += [c[1][model_type]] |
|
|
|
|
return models |
|
|
|
|
|
|
|
|
|
def load_additional_models(positive, negative): |
|
|
|
|
"""loads additional models in positive and negative conditioning""" |
|
|
|
|
models = load_c_nets(positive, negative) |
|
|
|
|
models = [] |
|
|
|
|
models += get_models_from_cond(positive, "control") |
|
|
|
|
models += get_models_from_cond(negative, "control") |
|
|
|
|
models += get_models_from_cond(positive, "gligen") |
|
|
|
|
models += get_models_from_cond(negative, "gligen") |
|
|
|
|
comfy.model_management.load_controlnet_gpu(models) |
|
|
|
|
return models |
|
|
|
|
|
|
|
|
|