|
|
|
@ -1,5 +1,6 @@
|
|
|
|
|
import torch |
|
|
|
|
import comfy.model_management |
|
|
|
|
import comfy.samplers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_noise(latent_image, seed, skip=0): |
|
|
|
@ -13,24 +14,22 @@ def prepare_noise(latent_image, seed, skip=0):
|
|
|
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
|
|
|
|
return noise |
|
|
|
|
|
|
|
|
|
def prepare_mask(noise_mask, noise): |
|
|
|
|
def prepare_mask(noise_mask, shape, device): |
|
|
|
|
"""ensures noise mask is of proper dimensions""" |
|
|
|
|
device = comfy.model_management.get_torch_device() |
|
|
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear") |
|
|
|
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(shape[2], shape[3]), mode="bilinear") |
|
|
|
|
noise_mask = noise_mask.round() |
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1) |
|
|
|
|
noise_mask = torch.cat([noise_mask] * noise.shape[0]) |
|
|
|
|
noise_mask = torch.cat([noise_mask] * shape[1], dim=1) |
|
|
|
|
noise_mask = torch.cat([noise_mask] * shape[0]) |
|
|
|
|
noise_mask = noise_mask.to(device) |
|
|
|
|
return noise_mask |
|
|
|
|
|
|
|
|
|
def broadcast_cond(cond, noise): |
|
|
|
|
"""broadcasts conditioning to the noise batch size""" |
|
|
|
|
device = comfy.model_management.get_torch_device() |
|
|
|
|
def broadcast_cond(cond, batch, device): |
|
|
|
|
"""broadcasts conditioning to the batch size""" |
|
|
|
|
copy = [] |
|
|
|
|
for p in cond: |
|
|
|
|
t = p[0] |
|
|
|
|
if t.shape[0] < noise.shape[0]: |
|
|
|
|
t = torch.cat([t] * noise.shape[0]) |
|
|
|
|
if t.shape[0] < batch: |
|
|
|
|
t = torch.cat([t] * batch) |
|
|
|
|
t = t.to(device) |
|
|
|
|
copy += [[t] + p[1:]] |
|
|
|
|
return copy |
|
|
|
@ -54,4 +53,30 @@ def load_additional_models(positive, negative):
|
|
|
|
|
def cleanup_additional_models(models): |
|
|
|
|
"""cleanup additional models that were loaded""" |
|
|
|
|
for m in models: |
|
|
|
|
m.cleanup() |
|
|
|
|
m.cleanup() |
|
|
|
|
|
|
|
|
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None): |
|
|
|
|
device = comfy.model_management.get_torch_device() |
|
|
|
|
|
|
|
|
|
if noise_mask is not None: |
|
|
|
|
noise_mask = prepare_mask(noise_mask, noise.shape, device) |
|
|
|
|
|
|
|
|
|
real_model = None |
|
|
|
|
comfy.model_management.load_model_gpu(model) |
|
|
|
|
real_model = model.model |
|
|
|
|
|
|
|
|
|
noise = noise.to(device) |
|
|
|
|
latent_image = latent_image.to(device) |
|
|
|
|
|
|
|
|
|
positive_copy = broadcast_cond(positive, noise.shape[0], device) |
|
|
|
|
negative_copy = broadcast_cond(negative, noise.shape[0], device) |
|
|
|
|
|
|
|
|
|
models = load_additional_models(positive, negative) |
|
|
|
|
|
|
|
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) |
|
|
|
|
|
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas) |
|
|
|
|
samples = samples.cpu() |
|
|
|
|
|
|
|
|
|
cleanup_additional_models(models) |
|
|
|
|
return samples |
|
|
|
|