BlenderNeko
2 years ago
3 changed files with 109 additions and 79 deletions
@ -0,0 +1,62 @@
|
||||
import torch |
||||
import comfy.model_management |
||||
|
||||
|
||||
def prepare_noise(latent, seed, disable_noise): |
||||
latent_image = latent["samples"] |
||||
if disable_noise: |
||||
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") |
||||
else: |
||||
batch_index = 0 |
||||
if "batch_index" in latent: |
||||
batch_index = latent["batch_index"] |
||||
|
||||
generator = torch.manual_seed(seed) |
||||
for i in range(batch_index): |
||||
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
||||
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
||||
return noise |
||||
|
||||
def create_mask(latent, noise): |
||||
noise_mask = None |
||||
device = comfy.model_management.get_torch_device() |
||||
if "noise_mask" in latent: |
||||
noise_mask = latent['noise_mask'] |
||||
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear") |
||||
noise_mask = noise_mask.round() |
||||
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1) |
||||
noise_mask = torch.cat([noise_mask] * noise.shape[0]) |
||||
noise_mask = noise_mask.to(device) |
||||
return noise_mask |
||||
|
||||
def broadcast_cond(cond, noise): |
||||
device = comfy.model_management.get_torch_device() |
||||
copy = [] |
||||
for p in cond: |
||||
t = p[0] |
||||
if t.shape[0] < noise.shape[0]: |
||||
t = torch.cat([t] * noise.shape[0]) |
||||
t = t.to(device) |
||||
copy += [[t] + p[1:]] |
||||
return copy |
||||
|
||||
def load_c_nets(positive, negative): |
||||
def get_models(cond): |
||||
models = [] |
||||
for c in cond: |
||||
if 'control' in c[1]: |
||||
models += [c[1]['control']] |
||||
if 'gligen' in c[1]: |
||||
models += [c[1]['gligen'][1]] |
||||
return models |
||||
|
||||
return get_models(positive) + get_models(negative) |
||||
|
||||
def load_additional_models(positive, negative): |
||||
models = load_c_nets(positive, negative) |
||||
comfy.model_management.load_controlnet_gpu(models) |
||||
return models |
||||
|
||||
def cleanup_additional_models(models): |
||||
for m in models: |
||||
m.cleanup() |
Loading…
Reference in new issue