|
|
|
import psutil
|
|
|
|
from enum import Enum
|
|
|
|
from comfy.cli_args import args
|
|
|
|
import comfy.utils
|
|
|
|
import torch
|
|
|
|
import sys
|
|
|
|
|
|
|
|
class VRAMState(Enum):
|
|
|
|
DISABLED = 0 #No vram present: no need to move models to vram
|
|
|
|
NO_VRAM = 1 #Very low vram: enable all the options to save vram
|
|
|
|
LOW_VRAM = 2
|
|
|
|
NORMAL_VRAM = 3
|
|
|
|
HIGH_VRAM = 4
|
|
|
|
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
|
|
|
|
|
|
|
|
class CPUState(Enum):
|
|
|
|
GPU = 0
|
|
|
|
CPU = 1
|
|
|
|
MPS = 2
|
|
|
|
|
|
|
|
# Determine VRAM State
|
|
|
|
vram_state = VRAMState.NORMAL_VRAM
|
|
|
|
set_vram_to = VRAMState.NORMAL_VRAM
|
|
|
|
cpu_state = CPUState.GPU
|
|
|
|
|
|
|
|
total_vram = 0
|
|
|
|
|
|
|
|
lowvram_available = True
|
|
|
|
xpu_available = False
|
|
|
|
|
|
|
|
if args.deterministic:
|
|
|
|
print("Using deterministic algorithms for pytorch")
|
|
|
|
torch.use_deterministic_algorithms(True, warn_only=True)
|
|
|
|
|
|
|
|
directml_enabled = False
|
|
|
|
if args.directml is not None:
|
|
|
|
import torch_directml
|
|
|
|
directml_enabled = True
|
|
|
|
device_index = args.directml
|
|
|
|
if device_index < 0:
|
|
|
|
directml_device = torch_directml.device()
|
|
|
|
else:
|
|
|
|
directml_device = torch_directml.device(device_index)
|
|
|
|
print("Using directml with device:", torch_directml.device_name(device_index))
|
|
|
|
# torch_directml.disable_tiled_resources(True)
|
|
|
|
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
|
|
|
|
|
|
|
|
try:
|
|
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
if torch.xpu.is_available():
|
|
|
|
xpu_available = True
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
try:
|
|
|
|
if torch.backends.mps.is_available():
|
|
|
|
cpu_state = CPUState.MPS
|
|
|
|
import torch.mps
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
if args.cpu:
|
|
|
|
cpu_state = CPUState.CPU
|
|
|
|
|
|
|
|
def is_intel_xpu():
|
|
|
|
global cpu_state
|
|
|
|
global xpu_available
|
|
|
|
if cpu_state == CPUState.GPU:
|
|
|
|
if xpu_available:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def get_torch_device():
|
|
|
|
global directml_enabled
|
|
|
|
global cpu_state
|
|
|
|
if directml_enabled:
|
|
|
|
global directml_device
|
|
|
|
return directml_device
|
|
|
|
if cpu_state == CPUState.MPS:
|
|
|
|
return torch.device("mps")
|
|
|
|
if cpu_state == CPUState.CPU:
|
|
|
|
return torch.device("cpu")
|
|
|
|
else:
|
|
|
|
if is_intel_xpu():
|
|
|
|
return torch.device("xpu")
|
|
|
|
else:
|
|
|
|
return torch.device(torch.cuda.current_device())
|
|
|
|
|
|
|
|
def get_total_memory(dev=None, torch_total_too=False):
|
|
|
|
global directml_enabled
|
|
|
|
if dev is None:
|
|
|
|
dev = get_torch_device()
|
|
|
|
|
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
|
|
|
mem_total = psutil.virtual_memory().total
|
|
|
|
mem_total_torch = mem_total
|
|
|
|
else:
|
|
|
|
if directml_enabled:
|
|
|
|
mem_total = 1024 * 1024 * 1024 #TODO
|
|
|
|
mem_total_torch = mem_total
|
|
|
|
elif is_intel_xpu():
|
|
|
|
stats = torch.xpu.memory_stats(dev)
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
|
|
|
mem_total_torch = mem_reserved
|
|
|
|
else:
|
|
|
|
stats = torch.cuda.memory_stats(dev)
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
|
|
|
|
mem_total_torch = mem_reserved
|
|
|
|
mem_total = mem_total_cuda
|
|
|
|
|
|
|
|
if torch_total_too:
|
|
|
|
return (mem_total, mem_total_torch)
|
|
|
|
else:
|
|
|
|
return mem_total
|
|
|
|
|
|
|
|
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
|
|
|
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
|
|
|
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
|
|
|
if not args.normalvram and not args.cpu:
|
|
|
|
if lowvram_available and total_vram <= 4096:
|
|
|
|
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
|
|
|
|
set_vram_to = VRAMState.LOW_VRAM
|
|
|
|
|
|
|
|
try:
|
|
|
|
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
|
|
|
|
except:
|
|
|
|
OOM_EXCEPTION = Exception
|
|
|
|
|
|
|
|
XFORMERS_VERSION = ""
|
|
|
|
XFORMERS_ENABLED_VAE = True
|
|
|
|
if args.disable_xformers:
|
|
|
|
XFORMERS_IS_AVAILABLE = False
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
import xformers
|
|
|
|
import xformers.ops
|
|
|
|
XFORMERS_IS_AVAILABLE = True
|
|
|
|
try:
|
|
|
|
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
try:
|
|
|
|
XFORMERS_VERSION = xformers.version.__version__
|
|
|
|
print("xformers version:", XFORMERS_VERSION)
|
|
|
|
if XFORMERS_VERSION.startswith("0.0.18"):
|
|
|
|
print()
|
|
|
|
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
|
|
|
|
print("Please downgrade or upgrade xformers to a different version.")
|
|
|
|
print()
|
|
|
|
XFORMERS_ENABLED_VAE = False
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
except:
|
|
|
|
XFORMERS_IS_AVAILABLE = False
|
|
|
|
|
|
|
|
def is_nvidia():
|
|
|
|
global cpu_state
|
|
|
|
if cpu_state == CPUState.GPU:
|
|
|
|
if torch.version.cuda:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
ENABLE_PYTORCH_ATTENTION = False
|
|
|
|
if args.use_pytorch_cross_attention:
|
|
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
|
|
XFORMERS_IS_AVAILABLE = False
|
|
|
|
|
|
|
|
VAE_DTYPE = torch.float32
|
|
|
|
|
|
|
|
try:
|
|
|
|
if is_nvidia():
|
|
|
|
torch_version = torch.version.__version__
|
|
|
|
if int(torch_version[0]) >= 2:
|
|
|
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
|
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
|
|
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
|
|
|
|
VAE_DTYPE = torch.bfloat16
|
|
|
|
if is_intel_xpu():
|
|
|
|
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
|
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
if is_intel_xpu():
|
|
|
|
VAE_DTYPE = torch.bfloat16
|
|
|
|
|
|
|
|
if args.cpu_vae:
|
|
|
|
VAE_DTYPE = torch.float32
|
|
|
|
|
|
|
|
if args.fp16_vae:
|
|
|
|
VAE_DTYPE = torch.float16
|
|
|
|
elif args.bf16_vae:
|
|
|
|
VAE_DTYPE = torch.bfloat16
|
|
|
|
elif args.fp32_vae:
|
|
|
|
VAE_DTYPE = torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
if ENABLE_PYTORCH_ATTENTION:
|
|
|
|
torch.backends.cuda.enable_math_sdp(True)
|
|
|
|
torch.backends.cuda.enable_flash_sdp(True)
|
|
|
|
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
|
|
|
|
|
|
|
if args.lowvram:
|
|
|
|
set_vram_to = VRAMState.LOW_VRAM
|
|
|
|
lowvram_available = True
|
|
|
|
elif args.novram:
|
|
|
|
set_vram_to = VRAMState.NO_VRAM
|
|
|
|
elif args.highvram or args.gpu_only:
|
|
|
|
vram_state = VRAMState.HIGH_VRAM
|
|
|
|
|
|
|
|
FORCE_FP32 = False
|
|
|
|
FORCE_FP16 = False
|
|
|
|
if args.force_fp32:
|
|
|
|
print("Forcing FP32, if this improves things please report it.")
|
|
|
|
FORCE_FP32 = True
|
|
|
|
|
|
|
|
if args.force_fp16:
|
|
|
|
print("Forcing FP16.")
|
|
|
|
FORCE_FP16 = True
|
|
|
|
|
|
|
|
if lowvram_available:
|
|
|
|
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
|
|
|
|
vram_state = set_vram_to
|
|
|
|
|
|
|
|
|
|
|
|
if cpu_state != CPUState.GPU:
|
|
|
|
vram_state = VRAMState.DISABLED
|
|
|
|
|
|
|
|
if cpu_state == CPUState.MPS:
|
|
|
|
vram_state = VRAMState.SHARED
|
|
|
|
|
|
|
|
print(f"Set vram state to: {vram_state.name}")
|
|
|
|
|
|
|
|
DISABLE_SMART_MEMORY = args.disable_smart_memory
|
|
|
|
|
|
|
|
if DISABLE_SMART_MEMORY:
|
|
|
|
print("Disabling smart memory management")
|
|
|
|
|
|
|
|
def get_torch_device_name(device):
|
|
|
|
if hasattr(device, 'type'):
|
|
|
|
if device.type == "cuda":
|
|
|
|
try:
|
|
|
|
allocator_backend = torch.cuda.get_allocator_backend()
|
|
|
|
except:
|
|
|
|
allocator_backend = ""
|
|
|
|
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
|
|
|
else:
|
|
|
|
return "{}".format(device.type)
|
|
|
|
elif is_intel_xpu():
|
|
|
|
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
|
|
|
else:
|
|
|
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
|
|
|
|
|
|
|
try:
|
|
|
|
print("Device:", get_torch_device_name(get_torch_device()))
|
|
|
|
except:
|
|
|
|
print("Could not pick default device.")
|
|
|
|
|
|
|
|
print("VAE dtype:", VAE_DTYPE)
|
|
|
|
|
|
|
|
current_loaded_models = []
|
|
|
|
|
|
|
|
def module_size(module):
|
|
|
|
module_mem = 0
|
|
|
|
sd = module.state_dict()
|
|
|
|
for k in sd:
|
|
|
|
t = sd[k]
|
|
|
|
module_mem += t.nelement() * t.element_size()
|
|
|
|
return module_mem
|
|
|
|
|
|
|
|
class LoadedModel:
|
|
|
|
def __init__(self, model):
|
|
|
|
self.model = model
|
|
|
|
self.model_accelerated = False
|
|
|
|
self.device = model.load_device
|
|
|
|
|
|
|
|
def model_memory(self):
|
|
|
|
return self.model.model_size()
|
|
|
|
|
|
|
|
def model_memory_required(self, device):
|
|
|
|
if device == self.model.current_device:
|
|
|
|
return 0
|
|
|
|
else:
|
|
|
|
return self.model_memory()
|
|
|
|
|
|
|
|
def model_load(self, lowvram_model_memory=0):
|
|
|
|
patch_model_to = None
|
|
|
|
if lowvram_model_memory == 0:
|
|
|
|
patch_model_to = self.device
|
|
|
|
|
|
|
|
self.model.model_patches_to(self.device)
|
|
|
|
self.model.model_patches_to(self.model.model_dtype())
|
|
|
|
|
|
|
|
try:
|
|
|
|
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
|
|
|
|
except Exception as e:
|
|
|
|
self.model.unpatch_model(self.model.offload_device)
|
|
|
|
self.model_unload()
|
|
|
|
raise e
|
|
|
|
|
|
|
|
if lowvram_model_memory > 0:
|
|
|
|
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
|
|
|
|
mem_counter = 0
|
|
|
|
for m in self.real_model.modules():
|
|
|
|
if hasattr(m, "comfy_cast_weights"):
|
|
|
|
m.prev_comfy_cast_weights = m.comfy_cast_weights
|
|
|
|
m.comfy_cast_weights = True
|
|
|
|
module_mem = module_size(m)
|
|
|
|
if mem_counter + module_mem < lowvram_model_memory:
|
|
|
|
m.to(self.device)
|
|
|
|
mem_counter += module_mem
|
|
|
|
elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
|
|
|
|
m.to(self.device)
|
|
|
|
mem_counter += module_size(m)
|
|
|
|
print("lowvram: loaded module regularly", m)
|
|
|
|
|
|
|
|
self.model_accelerated = True
|
|
|
|
|
|
|
|
if is_intel_xpu() and not args.disable_ipex_optimize:
|
|
|
|
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
|
|
|
|
|
|
|
|
return self.real_model
|
|
|
|
|
|
|
|
def model_unload(self):
|
|
|
|
if self.model_accelerated:
|
|
|
|
for m in self.real_model.modules():
|
|
|
|
if hasattr(m, "prev_comfy_cast_weights"):
|
|
|
|
m.comfy_cast_weights = m.prev_comfy_cast_weights
|
|
|
|
del m.prev_comfy_cast_weights
|
|
|
|
|
|
|
|
self.model_accelerated = False
|
|
|
|
|
|
|
|
self.model.unpatch_model(self.model.offload_device)
|
|
|
|
self.model.model_patches_to(self.model.offload_device)
|
|
|
|
|
|
|
|
def __eq__(self, other):
|
|
|
|
return self.model is other.model
|
|
|
|
|
|
|
|
def minimum_inference_memory():
|
|
|
|
return (1024 * 1024 * 1024)
|
|
|
|
|
|
|
|
def unload_model_clones(model):
|
|
|
|
to_unload = []
|
|
|
|
for i in range(len(current_loaded_models)):
|
|
|
|
if model.is_clone(current_loaded_models[i].model):
|
|
|
|
to_unload = [i] + to_unload
|
|
|
|
|
|
|
|
for i in to_unload:
|
|
|
|
print("unload clone", i)
|
|
|
|
current_loaded_models.pop(i).model_unload()
|
|
|
|
|
|
|
|
def free_memory(memory_required, device, keep_loaded=[]):
|
|
|
|
unloaded_model = False
|
|
|
|
for i in range(len(current_loaded_models) -1, -1, -1):
|
|
|
|
if not DISABLE_SMART_MEMORY:
|
|
|
|
if get_free_memory(device) > memory_required:
|
|
|
|
break
|
|
|
|
shift_model = current_loaded_models[i]
|
|
|
|
if shift_model.device == device:
|
|
|
|
if shift_model not in keep_loaded:
|
|
|
|
m = current_loaded_models.pop(i)
|
|
|
|
m.model_unload()
|
|
|
|
del m
|
|
|
|
unloaded_model = True
|
|
|
|
|
|
|
|
if unloaded_model:
|
|
|
|
soft_empty_cache()
|
|
|
|
else:
|
|
|
|
if vram_state != VRAMState.HIGH_VRAM:
|
|
|
|
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
|
|
|
|
if mem_free_torch > mem_free_total * 0.25:
|
|
|
|
soft_empty_cache()
|
|
|
|
|
|
|
|
def load_models_gpu(models, memory_required=0):
|
|
|
|
global vram_state
|
|
|
|
|
|
|
|
inference_memory = minimum_inference_memory()
|
|
|
|
extra_mem = max(inference_memory, memory_required)
|
|
|
|
|
|
|
|
models_to_load = []
|
|
|
|
models_already_loaded = []
|
|
|
|
for x in models:
|
|
|
|
loaded_model = LoadedModel(x)
|
|
|
|
|
|
|
|
if loaded_model in current_loaded_models:
|
|
|
|
index = current_loaded_models.index(loaded_model)
|
|
|
|
current_loaded_models.insert(0, current_loaded_models.pop(index))
|
|
|
|
models_already_loaded.append(loaded_model)
|
|
|
|
else:
|
|
|
|
if hasattr(x, "model"):
|
|
|
|
print(f"Requested to load {x.model.__class__.__name__}")
|
|
|
|
models_to_load.append(loaded_model)
|
|
|
|
|
|
|
|
if len(models_to_load) == 0:
|
|
|
|
devs = set(map(lambda a: a.device, models_already_loaded))
|
|
|
|
for d in devs:
|
|
|
|
if d != torch.device("cpu"):
|
|
|
|
free_memory(extra_mem, d, models_already_loaded)
|
|
|
|
return
|
|
|
|
|
|
|
|
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
|
|
|
|
|
|
|
|
total_memory_required = {}
|
|
|
|
for loaded_model in models_to_load:
|
|
|
|
unload_model_clones(loaded_model.model)
|
|
|
|
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
|
|
|
|
|
|
|
|
for device in total_memory_required:
|
|
|
|
if device != torch.device("cpu"):
|
|
|
|
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
|
|
|
|
|
|
|
|
for loaded_model in models_to_load:
|
|
|
|
model = loaded_model.model
|
|
|
|
torch_dev = model.load_device
|
|
|
|
if is_device_cpu(torch_dev):
|
|
|
|
vram_set_state = VRAMState.DISABLED
|
|
|
|
else:
|
|
|
|
vram_set_state = vram_state
|
|
|
|
lowvram_model_memory = 0
|
|
|
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
|
|
|
model_size = loaded_model.model_memory_required(torch_dev)
|
|
|
|
current_free_mem = get_free_memory(torch_dev)
|
|
|
|
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
|
|
|
|
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
|
|
|
|
vram_set_state = VRAMState.LOW_VRAM
|
|
|
|
else:
|
|
|
|
lowvram_model_memory = 0
|
|
|
|
|
|
|
|
if vram_set_state == VRAMState.NO_VRAM:
|
|
|
|
lowvram_model_memory = 64 * 1024 * 1024
|
|
|
|
|
|
|
|
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
|
|
|
|
current_loaded_models.insert(0, loaded_model)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_gpu(model):
|
|
|
|
return load_models_gpu([model])
|
|
|
|
|
|
|
|
def cleanup_models():
|
|
|
|
to_delete = []
|
|
|
|
for i in range(len(current_loaded_models)):
|
|
|
|
if sys.getrefcount(current_loaded_models[i].model) <= 2:
|
|
|
|
to_delete = [i] + to_delete
|
|
|
|
|
|
|
|
for i in to_delete:
|
|
|
|
x = current_loaded_models.pop(i)
|
|
|
|
x.model_unload()
|
|
|
|
del x
|
|
|
|
|
|
|
|
def dtype_size(dtype):
|
|
|
|
dtype_size = 4
|
|
|
|
if dtype == torch.float16 or dtype == torch.bfloat16:
|
|
|
|
dtype_size = 2
|
|
|
|
elif dtype == torch.float32:
|
|
|
|
dtype_size = 4
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
dtype_size = dtype.itemsize
|
|
|
|
except: #Old pytorch doesn't have .itemsize
|
|
|
|
pass
|
|
|
|
return dtype_size
|
|
|
|
|
|
|
|
def unet_offload_device():
|
|
|
|
if vram_state == VRAMState.HIGH_VRAM:
|
|
|
|
return get_torch_device()
|
|
|
|
else:
|
|
|
|
return torch.device("cpu")
|
|
|
|
|
|
|
|
def unet_inital_load_device(parameters, dtype):
|
|
|
|
torch_dev = get_torch_device()
|
|
|
|
if vram_state == VRAMState.HIGH_VRAM:
|
|
|
|
return torch_dev
|
|
|
|
|
|
|
|
cpu_dev = torch.device("cpu")
|
|
|
|
if DISABLE_SMART_MEMORY:
|
|
|
|
return cpu_dev
|
|
|
|
|
|
|
|
model_size = dtype_size(dtype) * parameters
|
|
|
|
|
|
|
|
mem_dev = get_free_memory(torch_dev)
|
|
|
|
mem_cpu = get_free_memory(cpu_dev)
|
|
|
|
if mem_dev > mem_cpu and model_size < mem_dev:
|
|
|
|
return torch_dev
|
|
|
|
else:
|
|
|
|
return cpu_dev
|
|
|
|
|
|
|
|
def unet_dtype(device=None, model_params=0):
|
|
|
|
if args.bf16_unet:
|
|
|
|
return torch.bfloat16
|
|
|
|
if args.fp16_unet:
|
|
|
|
return torch.float16
|
|
|
|
if args.fp8_e4m3fn_unet:
|
|
|
|
return torch.float8_e4m3fn
|
|
|
|
if args.fp8_e5m2_unet:
|
|
|
|
return torch.float8_e5m2
|
|
|
|
if should_use_fp16(device=device, model_params=model_params):
|
|
|
|
return torch.float16
|
|
|
|
return torch.float32
|
|
|
|
|
|
|
|
# None means no manual cast
|
|
|
|
def unet_manual_cast(weight_dtype, inference_device):
|
|
|
|
if weight_dtype == torch.float32:
|
|
|
|
return None
|
|
|
|
|
|
|
|
fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False)
|
|
|
|
if fp16_supported and weight_dtype == torch.float16:
|
|
|
|
return None
|
|
|
|
|
|
|
|
if fp16_supported:
|
|
|
|
return torch.float16
|
|
|
|
else:
|
|
|
|
return torch.float32
|
|
|
|
|
|
|
|
def text_encoder_offload_device():
|
|
|
|
if args.gpu_only:
|
|
|
|
return get_torch_device()
|
|
|
|
else:
|
|
|
|
return torch.device("cpu")
|
|
|
|
|
|
|
|
def text_encoder_device():
|
|
|
|
if args.gpu_only:
|
|
|
|
return get_torch_device()
|
|
|
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
|
|
|
if is_intel_xpu():
|
|
|
|
return torch.device("cpu")
|
|
|
|
if should_use_fp16(prioritize_performance=False):
|
|
|
|
return get_torch_device()
|
|
|
|
else:
|
|
|
|
return torch.device("cpu")
|
|
|
|
else:
|
|
|
|
return torch.device("cpu")
|
|
|
|
|
|
|
|
def text_encoder_dtype(device=None):
|
|
|
|
if args.fp8_e4m3fn_text_enc:
|
|
|
|
return torch.float8_e4m3fn
|
|
|
|
elif args.fp8_e5m2_text_enc:
|
|
|
|
return torch.float8_e5m2
|
|
|
|
elif args.fp16_text_enc:
|
|
|
|
return torch.float16
|
|
|
|
elif args.fp32_text_enc:
|
|
|
|
return torch.float32
|
|
|
|
|
|
|
|
if is_device_cpu(device):
|
|
|
|
return torch.float16
|
|
|
|
|
|
|
|
return torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
def intermediate_device():
|
|
|
|
if args.gpu_only:
|
|
|
|
return get_torch_device()
|
|
|
|
else:
|
|
|
|
return torch.device("cpu")
|
|
|
|
|
|
|
|
def vae_device():
|
|
|
|
if args.cpu_vae:
|
|
|
|
return torch.device("cpu")
|
|
|
|
return get_torch_device()
|
|
|
|
|
|
|
|
def vae_offload_device():
|
|
|
|
if args.gpu_only:
|
|
|
|
return get_torch_device()
|
|
|
|
else:
|
|
|
|
return torch.device("cpu")
|
|
|
|
|
|
|
|
def vae_dtype():
|
|
|
|
global VAE_DTYPE
|
|
|
|
return VAE_DTYPE
|
|
|
|
|
|
|
|
def get_autocast_device(dev):
|
|
|
|
if hasattr(dev, 'type'):
|
|
|
|
return dev.type
|
|
|
|
return "cuda"
|
|
|
|
|
|
|
|
def supports_dtype(device, dtype): #TODO
|
|
|
|
if dtype == torch.float32:
|
|
|
|
return True
|
|
|
|
if is_device_cpu(device):
|
|
|
|
return False
|
|
|
|
if dtype == torch.float16:
|
|
|
|
return True
|
|
|
|
if dtype == torch.bfloat16:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def device_supports_non_blocking(device):
|
|
|
|
if is_device_mps(device):
|
|
|
|
return False #pytorch bug? mps doesn't support non blocking
|
|
|
|
return True
|
|
|
|
|
|
|
|
def cast_to_device(tensor, device, dtype, copy=False):
|
|
|
|
device_supports_cast = False
|
|
|
|
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
|
|
|
|
device_supports_cast = True
|
|
|
|
elif tensor.dtype == torch.bfloat16:
|
|
|
|
if hasattr(device, 'type') and device.type.startswith("cuda"):
|
|
|
|
device_supports_cast = True
|
|
|
|
elif is_intel_xpu():
|
|
|
|
device_supports_cast = True
|
|
|
|
|
|
|
|
non_blocking = device_supports_non_blocking(device)
|
|
|
|
|
|
|
|
if device_supports_cast:
|
|
|
|
if copy:
|
|
|
|
if tensor.device == device:
|
|
|
|
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
|
|
|
|
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
|
|
|
else:
|
|
|
|
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
|
|
|
|
else:
|
|
|
|
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
|
|
|
|
|
|
|
|
def xformers_enabled():
|
|
|
|
global directml_enabled
|
|
|
|
global cpu_state
|
|
|
|
if cpu_state != CPUState.GPU:
|
|
|
|
return False
|
|
|
|
if is_intel_xpu():
|
|
|
|
return False
|
|
|
|
if directml_enabled:
|
|
|
|
return False
|
|
|
|
return XFORMERS_IS_AVAILABLE
|
|
|
|
|
|
|
|
|
|
|
|
def xformers_enabled_vae():
|
|
|
|
enabled = xformers_enabled()
|
|
|
|
if not enabled:
|
|
|
|
return False
|
|
|
|
|
|
|
|
return XFORMERS_ENABLED_VAE
|
|
|
|
|
|
|
|
def pytorch_attention_enabled():
|
|
|
|
global ENABLE_PYTORCH_ATTENTION
|
|
|
|
return ENABLE_PYTORCH_ATTENTION
|
|
|
|
|
|
|
|
def pytorch_attention_flash_attention():
|
|
|
|
global ENABLE_PYTORCH_ATTENTION
|
|
|
|
if ENABLE_PYTORCH_ATTENTION:
|
|
|
|
#TODO: more reliable way of checking for flash attention?
|
|
|
|
if is_nvidia(): #pytorch flash attention only works on Nvidia
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def get_free_memory(dev=None, torch_free_too=False):
|
|
|
|
global directml_enabled
|
|
|
|
if dev is None:
|
|
|
|
dev = get_torch_device()
|
|
|
|
|
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
|
|
|
mem_free_total = psutil.virtual_memory().available
|
|
|
|
mem_free_torch = mem_free_total
|
|
|
|
else:
|
|
|
|
if directml_enabled:
|
|
|
|
mem_free_total = 1024 * 1024 * 1024 #TODO
|
|
|
|
mem_free_torch = mem_free_total
|
|
|
|
elif is_intel_xpu():
|
|
|
|
stats = torch.xpu.memory_stats(dev)
|
|
|
|
mem_active = stats['active_bytes.all.current']
|
|
|
|
mem_allocated = stats['allocated_bytes.all.current']
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
mem_free_torch = mem_reserved - mem_active
|
|
|
|
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
|
|
|
|
else:
|
|
|
|
stats = torch.cuda.memory_stats(dev)
|
|
|
|
mem_active = stats['active_bytes.all.current']
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
|
|
|
mem_free_torch = mem_reserved - mem_active
|
|
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
|
|
|
|
|
|
if torch_free_too:
|
|
|
|
return (mem_free_total, mem_free_torch)
|
|
|
|
else:
|
|
|
|
return mem_free_total
|
|
|
|
|
|
|
|
def cpu_mode():
|
|
|
|
global cpu_state
|
|
|
|
return cpu_state == CPUState.CPU
|
|
|
|
|
|
|
|
def mps_mode():
|
|
|
|
global cpu_state
|
|
|
|
return cpu_state == CPUState.MPS
|
|
|
|
|
|
|
|
def is_device_cpu(device):
|
|
|
|
if hasattr(device, 'type'):
|
|
|
|
if (device.type == 'cpu'):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def is_device_mps(device):
|
|
|
|
if hasattr(device, 'type'):
|
|
|
|
if (device.type == 'mps'):
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
|
|
|
|
global directml_enabled
|
|
|
|
|
|
|
|
if device is not None:
|
|
|
|
if is_device_cpu(device):
|
|
|
|
return False
|
|
|
|
|
|
|
|
if FORCE_FP16:
|
|
|
|
return True
|
|
|
|
|
|
|
|
if device is not None: #TODO
|
|
|
|
if is_device_mps(device):
|
|
|
|
return False
|
|
|
|
|
|
|
|
if FORCE_FP32:
|
|
|
|
return False
|
|
|
|
|
|
|
|
if directml_enabled:
|
|
|
|
return False
|
|
|
|
|
|
|
|
if cpu_mode() or mps_mode():
|
|
|
|
return False #TODO ?
|
|
|
|
|
|
|
|
if is_intel_xpu():
|
|
|
|
return True
|
|
|
|
|
|
|
|
if torch.cuda.is_bf16_supported():
|
|
|
|
return True
|
|
|
|
|
|
|
|
props = torch.cuda.get_device_properties("cuda")
|
|
|
|
if props.major < 6:
|
|
|
|
return False
|
|
|
|
|
|
|
|
fp16_works = False
|
|
|
|
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
|
|
|
|
#when the model doesn't actually fit on the card
|
|
|
|
#TODO: actually test if GP106 and others have the same type of behavior
|
|
|
|
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
|
|
|
|
for x in nvidia_10_series:
|
|
|
|
if x in props.name.lower():
|
|
|
|
fp16_works = True
|
|
|
|
|
|
|
|
if fp16_works:
|
|
|
|
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
|
|
|
|
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
|
|
|
return True
|
|
|
|
|
|
|
|
if props.major < 7:
|
|
|
|
return False
|
|
|
|
|
|
|
|
#FP16 is just broken on these cards
|
|
|
|
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
|
|
|
|
for x in nvidia_16_series:
|
|
|
|
if x in props.name:
|
|
|
|
return False
|
|
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
def soft_empty_cache(force=False):
|
|
|
|
global cpu_state
|
|
|
|
if cpu_state == CPUState.MPS:
|
|
|
|
torch.mps.empty_cache()
|
|
|
|
elif is_intel_xpu():
|
|
|
|
torch.xpu.empty_cache()
|
|
|
|
elif torch.cuda.is_available():
|
|
|
|
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.cuda.ipc_collect()
|
|
|
|
|
|
|
|
def unload_all_models():
|
|
|
|
free_memory(1e30, get_torch_device())
|
|
|
|
|
|
|
|
|
|
|
|
def resolve_lowvram_weight(weight, model, key): #TODO: remove
|
|
|
|
return weight
|
|
|
|
|
|
|
|
#TODO: might be cleaner to put this somewhere else
|
|
|
|
import threading
|
|
|
|
|
|
|
|
class InterruptProcessingException(Exception):
|
|
|
|
pass
|
|
|
|
|
|
|
|
interrupt_processing_mutex = threading.RLock()
|
|
|
|
|
|
|
|
interrupt_processing = False
|
|
|
|
def interrupt_current_processing(value=True):
|
|
|
|
global interrupt_processing
|
|
|
|
global interrupt_processing_mutex
|
|
|
|
with interrupt_processing_mutex:
|
|
|
|
interrupt_processing = value
|
|
|
|
|
|
|
|
def processing_interrupted():
|
|
|
|
global interrupt_processing
|
|
|
|
global interrupt_processing_mutex
|
|
|
|
with interrupt_processing_mutex:
|
|
|
|
return interrupt_processing
|
|
|
|
|
|
|
|
def throw_exception_if_processing_interrupted():
|
|
|
|
global interrupt_processing
|
|
|
|
global interrupt_processing_mutex
|
|
|
|
with interrupt_processing_mutex:
|
|
|
|
if interrupt_processing:
|
|
|
|
interrupt_processing = False
|
|
|
|
raise InterruptProcessingException()
|