|
|
|
@ -102,6 +102,12 @@ def load_model_gpu(model):
|
|
|
|
|
|
|
|
|
|
def load_controlnet_gpu(models): |
|
|
|
|
global current_gpu_controlnets |
|
|
|
|
global vram_state |
|
|
|
|
|
|
|
|
|
if vram_state == LOW_VRAM or vram_state == NO_VRAM: |
|
|
|
|
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after |
|
|
|
|
return |
|
|
|
|
|
|
|
|
|
for m in current_gpu_controlnets: |
|
|
|
|
if m not in models: |
|
|
|
|
m.cpu() |
|
|
|
@ -111,6 +117,19 @@ def load_controlnet_gpu(models):
|
|
|
|
|
current_gpu_controlnets.append(m.cuda()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_if_low_vram(model): |
|
|
|
|
global vram_state |
|
|
|
|
if vram_state == LOW_VRAM or vram_state == NO_VRAM: |
|
|
|
|
return model.cuda() |
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
def unload_if_low_vram(model): |
|
|
|
|
global vram_state |
|
|
|
|
if vram_state == LOW_VRAM or vram_state == NO_VRAM: |
|
|
|
|
return model.cpu() |
|
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_free_memory(): |
|
|
|
|
dev = torch.cuda.current_device() |
|
|
|
|
stats = torch.cuda.memory_stats(dev) |
|
|
|
|