Browse Source

Refactor and improve model_management code related to free memory.

pull/727/head
comfyanonymous 1 year ago
parent
commit
67892b5ac5
  1. 131
      comfy/model_management.py
  2. 6
      server.py

131
comfy/model_management.py

@ -1,6 +1,7 @@
import psutil
from enum import Enum
from comfy.cli_args import args
import torch
class VRAMState(Enum):
CPU = 0
@ -33,28 +34,67 @@ if args.directml is not None:
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import torch
if directml_enabled:
pass #TODO
else:
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
except:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
except:
pass
def get_torch_device():
global xpu_available
global directml_enabled
if directml_enabled:
global directml_device
return directml_device
if vram_state == VRAMState.MPS:
return torch.device("mps")
if vram_state == VRAMState.CPU:
return torch.device("cpu")
else:
if xpu_available:
return torch.device("xpu")
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_total
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
@ -128,29 +168,17 @@ if args.cpu:
print(f"Set vram state to: {vram_state.name}")
def get_torch_device():
global xpu_available
global directml_enabled
if directml_enabled:
global directml_device
return directml_device
if vram_state == VRAMState.MPS:
return torch.device("mps")
if vram_state == VRAMState.CPU:
return torch.device("cpu")
else:
if xpu_available:
return torch.device("xpu")
else:
return torch.cuda.current_device()
def get_torch_device_name(device):
if hasattr(device, 'type'):
return "{}".format(device.type)
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
if device.type == "cuda":
return "{} {}".format(device, torch.cuda.get_device_name(device))
else:
return "{}".format(device.type)
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
print("Using device:", get_torch_device_name(get_torch_device()))
print("Device:", get_torch_device_name(get_torch_device()))
except:
print("Could not pick default device.")
@ -308,33 +336,6 @@ def pytorch_attention_flash_attention():
return True
return False
def get_total_memory(dev=None, torch_total_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_total
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled

6
server.py

@ -7,7 +7,6 @@ import execution
import uuid
import json
import glob
import torch
from PIL import Image
from io import BytesIO
@ -284,9 +283,8 @@ class PromptServer():
@routes.get("/system_stats")
async def get_queue(request):
device_index = comfy.model_management.get_torch_device()
device = torch.device(device_index)
device_name = comfy.model_management.get_torch_device_name(device_index)
device = comfy.model_management.get_torch_device()
device_name = comfy.model_management.get_torch_device_name(device)
vram_total, torch_vram_total = comfy.model_management.get_total_memory(device, torch_total_too=True)
vram_free, torch_vram_free = comfy.model_management.get_free_memory(device, torch_free_too=True)
system_stats = {

Loading…
Cancel
Save