|
|
|
@ -187,13 +187,13 @@ class ModelPatcher:
|
|
|
|
|
else: |
|
|
|
|
weight += alpha * w1.type(weight.dtype).to(weight.device) |
|
|
|
|
elif len(v) == 4: #lora/locon |
|
|
|
|
mat1 = v[0].float().to(weight.device) |
|
|
|
|
mat2 = v[1].float().to(weight.device) |
|
|
|
|
mat1 = v[0].to(weight.device).float() |
|
|
|
|
mat2 = v[1].to(weight.device).float() |
|
|
|
|
if v[2] is not None: |
|
|
|
|
alpha *= v[2] / mat2.shape[0] |
|
|
|
|
if v[3] is not None: |
|
|
|
|
#locon mid weights, hopefully the math is fine because I didn't properly test it |
|
|
|
|
mat3 = v[3].float().to(weight.device) |
|
|
|
|
mat3 = v[3].to(weight.device).float() |
|
|
|
|
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] |
|
|
|
|
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) |
|
|
|
|
try: |
|
|
|
@ -212,18 +212,18 @@ class ModelPatcher:
|
|
|
|
|
|
|
|
|
|
if w1 is None: |
|
|
|
|
dim = w1_b.shape[0] |
|
|
|
|
w1 = torch.mm(w1_a.float(), w1_b.float()) |
|
|
|
|
w1 = torch.mm(w1_a.to(weight.device).float(), w1_b.to(weight.device).float()) |
|
|
|
|
else: |
|
|
|
|
w1 = w1.float().to(weight.device) |
|
|
|
|
w1 = w1.to(weight.device).float() |
|
|
|
|
|
|
|
|
|
if w2 is None: |
|
|
|
|
dim = w2_b.shape[0] |
|
|
|
|
if t2 is None: |
|
|
|
|
w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device)) |
|
|
|
|
w2 = torch.mm(w2_a.to(weight.device).float(), w2_b.to(weight.device).float()) |
|
|
|
|
else: |
|
|
|
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device)) |
|
|
|
|
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2_b.to(weight.device).float(), w2_a.to(weight.device).float()) |
|
|
|
|
else: |
|
|
|
|
w2 = w2.float().to(weight.device) |
|
|
|
|
w2 = w2.to(weight.device).float() |
|
|
|
|
|
|
|
|
|
if len(w2.shape) == 4: |
|
|
|
|
w1 = w1.unsqueeze(2).unsqueeze(2) |
|
|
|
@ -244,11 +244,11 @@ class ModelPatcher:
|
|
|
|
|
if v[5] is not None: #cp decomposition |
|
|
|
|
t1 = v[5] |
|
|
|
|
t2 = v[6] |
|
|
|
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device)) |
|
|
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device)) |
|
|
|
|
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.to(weight.device).float(), w1b.to(weight.device).float(), w1a.to(weight.device).float()) |
|
|
|
|
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2b.to(weight.device).float(), w2a.to(weight.device).float()) |
|
|
|
|
else: |
|
|
|
|
m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device)) |
|
|
|
|
m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device)) |
|
|
|
|
m1 = torch.mm(w1a.to(weight.device).float(), w1b.to(weight.device).float()) |
|
|
|
|
m2 = torch.mm(w2a.to(weight.device).float(), w2b.to(weight.device).float()) |
|
|
|
|
|
|
|
|
|
try: |
|
|
|
|
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) |
|
|
|
|