diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index a6ee0bae..85bf5bd2 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -187,13 +187,13 @@ class ModelPatcher: else: weight += alpha * w1.type(weight.dtype).to(weight.device) elif len(v) == 4: #lora/locon - mat1 = v[0].float().to(weight.device) - mat2 = v[1].float().to(weight.device) + mat1 = v[0].to(weight.device).float() + mat2 = v[1].to(weight.device).float() if v[2] is not None: alpha *= v[2] / mat2.shape[0] if v[3] is not None: #locon mid weights, hopefully the math is fine because I didn't properly test it - mat3 = v[3].float().to(weight.device) + mat3 = v[3].to(weight.device).float() final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) try: @@ -212,18 +212,18 @@ class ModelPatcher: if w1 is None: dim = w1_b.shape[0] - w1 = torch.mm(w1_a.float(), w1_b.float()) + w1 = torch.mm(w1_a.to(weight.device).float(), w1_b.to(weight.device).float()) else: - w1 = w1.float().to(weight.device) + w1 = w1.to(weight.device).float() if w2 is None: dim = w2_b.shape[0] if t2 is None: - w2 = torch.mm(w2_a.float().to(weight.device), w2_b.float().to(weight.device)) + w2 = torch.mm(w2_a.to(weight.device).float(), w2_b.to(weight.device).float()) else: - w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2_b.float().to(weight.device), w2_a.float().to(weight.device)) + w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2_b.to(weight.device).float(), w2_a.to(weight.device).float()) else: - w2 = w2.float().to(weight.device) + w2 = w2.to(weight.device).float() if len(w2.shape) == 4: w1 = w1.unsqueeze(2).unsqueeze(2) @@ -244,11 +244,11 @@ class ModelPatcher: if v[5] is not None: #cp decomposition t1 = v[5] t2 = v[6] - m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float().to(weight.device), w1b.float().to(weight.device), w1a.float().to(weight.device)) - m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float().to(weight.device), w2b.float().to(weight.device), w2a.float().to(weight.device)) + m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.to(weight.device).float(), w1b.to(weight.device).float(), w1a.to(weight.device).float()) + m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2b.to(weight.device).float(), w2a.to(weight.device).float()) else: - m1 = torch.mm(w1a.float().to(weight.device), w1b.float().to(weight.device)) - m2 = torch.mm(w2a.float().to(weight.device), w2b.float().to(weight.device)) + m1 = torch.mm(w1a.to(weight.device).float(), w1b.to(weight.device).float()) + m2 = torch.mm(w2a.to(weight.device).float(), w2b.to(weight.device).float()) try: weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)