Browse Source

Added my contributions to community-contributions

pull/153/head
lmmelo 3 months ago
parent
commit
b93474b586
  1. 185
      week1/community-contributions/0225_day2_exercise_by_LM.ipynb

185
week1/community-contributions/0225_day2_exercise_by_LM.ipynb

@ -0,0 +1,185 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fef36918-109d-41e3-8603-75ff81b42379",
"metadata": {},
"source": [
"# Solution for exercise day 2 - slight modification: model is a parameter also - display_summary(\"deepseek-r1:1.5b\",\"https://yoururl\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b50349ac-93ea-496b-ae20-bd72a93bb138",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "edd073c7-8444-4a0d-b84e-4b2ed0ee7f35",
"metadata": {},
"outputs": [],
"source": [
"# Constants\n",
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
"HEADERS = {\"Content-Type\": \"application/json\"}\n",
"#MODEL = \"llama3.2\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e3a6e1a-e4c7-4448-9852-1b6ba2bd8d66",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
"\n",
" def __init__(self, url):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ae3752ca-3a97-4d6a-ac84-5b75ebfb50ed",
"metadata": {},
"outputs": [],
"source": [
"# Define the system prompt \n",
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
"and provides a short summary, ignoring text that might be navigation related. \\\n",
"Respond in markdown.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48b5240f-7617-4e51-a320-cba9650bec84",
"metadata": {},
"outputs": [],
"source": [
"# A function that writes a User Prompt that asks for summaries of websites:\n",
"\n",
"def user_prompt_for(website):\n",
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
"please provide a short summary of this website in markdown. \\\n",
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
" user_prompt += website.text\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f7d84f0-60f2-4cbf-b4d1-173a79fe3380",
"metadata": {},
"outputs": [],
"source": [
"def messages_for(website):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "25520a31-c857-4ed5-86da-50dfe5fab7bb",
"metadata": {},
"outputs": [],
"source": [
"def summarize(model,url):\n",
" website = Website(url)\n",
" payload = {\n",
" \"model\": model,\n",
" \"messages\": messages_for(website),\n",
" \"stream\": False\n",
" }\n",
" response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
" return response.json()['message']['content']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "430776ed-8516-43a9-8a22-618d9080f2e1",
"metadata": {},
"outputs": [],
"source": [
"# A function to display this nicely in the Jupyter output, using markdown\n",
"def display_summary(model,url):\n",
" summary = summarize(model,url)\n",
" display(Markdown(summary))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b2b05c1f-e4a2-4f65-bd6d-634d72e38b6e",
"metadata": {},
"outputs": [],
"source": [
"#!ollama pull deepseek-r1:1.5b"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01513f8a-15b7-4053-bfe4-44b36e5494d1",
"metadata": {},
"outputs": [],
"source": [
"display_summary(\"deepseek-r1:1.5b\",\"https://www.ipma.pt\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading…
Cancel
Save