4 changed files with 442 additions and 0 deletions
@ -0,0 +1,67 @@
|
||||
# 🧠 Community Contribution: Async Playwright-based OpenAI Scraper |
||||
|
||||
This contribution presents a fully asynchronous, headless-browser-based scraper for [https://openai.com](https://openai.com) using **Playwright** — an alternative to Selenium. |
||||
|
||||
Developed by: [lakovicb](https://github.com/lakovicb) |
||||
IDE used: WingIDE Pro (Jupyter compatibility via `nest_asyncio`) |
||||
|
||||
--- |
||||
|
||||
## 📦 Features |
||||
|
||||
- 🧭 Simulates human-like interactions (mouse movement, scrolling) |
||||
- 🧠 GPT-based analysis using OpenAI's API |
||||
- 🧪 Works inside **JupyterLab** using `nest_asyncio` |
||||
- 📊 Prometheus metrics for scraping observability |
||||
- ⚡ Smart content caching via `diskcache` |
||||
|
||||
--- |
||||
|
||||
## 🚀 How to Run |
||||
|
||||
### 1. Install dependencies |
||||
|
||||
```bash |
||||
pip install -r requirements.txt |
||||
``` |
||||
|
||||
> Ensure [Playwright is installed & browsers are downloaded](https://playwright.dev/python/docs/intro) |
||||
|
||||
```bash |
||||
playwright install |
||||
``` |
||||
|
||||
### 2. Set environment variables in `.env` |
||||
|
||||
```env |
||||
OPENAI_API_KEY=your_openai_key |
||||
BROWSER_PATH=/usr/bin/chromium-browser |
||||
``` |
||||
|
||||
You can also define optional proxy/login params if needed. |
||||
|
||||
--- |
||||
|
||||
## 📘 Notebooks Included |
||||
|
||||
| Notebook | Description | |
||||
|----------|-------------| |
||||
| `Playwright_Solution_JupyterAsync.ipynb` | Executes async scraper directly inside Jupyter | |
||||
| `Playwright_Solution_Showcase_Formatted.ipynb` | Nicely formatted output for human reading | |
||||
|
||||
--- |
||||
|
||||
## 🔁 Output Example |
||||
|
||||
- GPT-generated summary |
||||
- Timeline of updates |
||||
- Entities and projects mentioned |
||||
- Structured topics & themes |
||||
|
||||
✅ *Can be extended with PDF export, LangChain pipeline, or vector store ingestion.* |
||||
|
||||
--- |
||||
|
||||
## 🙏 Thanks |
||||
|
||||
Huge thanks to Ed Donner for the amazing course and challenge inspiration! |
@ -0,0 +1,300 @@
|
||||
import asyncio |
||||
from playwright.async_api import async_playwright |
||||
from openai import OpenAI |
||||
import logging |
||||
import random |
||||
import time |
||||
import os |
||||
from prometheus_client import start_http_server, Counter, Histogram |
||||
from diskcache import Cache |
||||
from dotenv import load_dotenv |
||||
|
||||
load_dotenv() |
||||
|
||||
# Setting up Prometheus metrics |
||||
SCRAPE_ATTEMPTS = Counter('scrape_attempts', 'Total scraping attempts') |
||||
SCRAPE_DURATION = Histogram( |
||||
'scrape_duration', 'Scraping duration distribution') |
||||
|
||||
# Setting up cache |
||||
cache = Cache('./scraper_cache') |
||||
|
||||
|
||||
class ScrapingError(Exception): |
||||
pass |
||||
|
||||
|
||||
class ContentAnalysisError(Exception): |
||||
pass |
||||
|
||||
|
||||
class EnhancedOpenAIScraper: |
||||
API_KEY = os.getenv("OPENAI_API_KEY") |
||||
BROWSER_EXECUTABLE = os.getenv( |
||||
"BROWSER_PATH", "/usr/bin/chromium-browser") |
||||
MAX_CONTENT_LENGTH = int(os.getenv("MAX_CONTENT_LENGTH", 30000)) |
||||
|
||||
def __init__(self, headless=True): |
||||
self.user_agents = [ |
||||
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", |
||||
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" |
||||
] |
||||
self.timeout = 45000 # 45 seconds |
||||
self.retry_count = int(os.getenv("RETRY_COUNT", 2)) |
||||
self.headless = headless |
||||
self.mouse_velocity_range = (100, 500) # px/ms |
||||
self.interaction_delays = { |
||||
'scroll': (int(os.getenv("SCROLL_DELAY_MIN", 500)), int(os.getenv("SCROLL_DELAY_MAX", 2000))), |
||||
'click': (int(os.getenv("CLICK_DELAY_MIN", 100)), int(os.getenv("CLICK_DELAY_MAX", 300))), |
||||
'movement': (int(os.getenv("MOVEMENT_DELAY_MIN", 50)), int(os.getenv("MOVEMENT_DELAY_MAX", 200))) |
||||
} |
||||
self.proxy_servers = [server.strip() for server in os.getenv( |
||||
"PROXY_SERVERS", "").split(',') if server.strip()] |
||||
|
||||
async def human_interaction(self, page): |
||||
"""Advanced simulation of user behavior""" |
||||
# Random mouse movement path |
||||
for _ in range(random.randint(2, 5)): |
||||
x = random.randint(0, 1366) |
||||
y = random.randint(0, 768) |
||||
await page.mouse.move(x, y, steps=random.randint(5, 20)) |
||||
await page.wait_for_timeout(random.randint(*self.interaction_delays['movement'])) |
||||
|
||||
# Simulating typing |
||||
if random.random() < 0.3: |
||||
await page.keyboard.press('Tab') |
||||
await page.keyboard.type(' ', delay=random.randint(50, 200)) |
||||
|
||||
# More realistic scrolling |
||||
scroll_distance = random.choice([300, 600, 900]) |
||||
await page.mouse.wheel(0, scroll_distance) |
||||
await page.wait_for_timeout(random.randint(*self.interaction_delays['scroll'])) |
||||
|
||||
async def load_page(self, page, url): |
||||
"""Smarter page loading with dynamic waiting""" |
||||
start_time = time.time() |
||||
try: |
||||
await page.goto(url, wait_until="domcontentloaded", timeout=self.timeout) |
||||
|
||||
# Smarter content extraction selectors |
||||
selectors = [ |
||||
'main article', |
||||
'#main-content', |
||||
'section:first-of-type', |
||||
'div[class*="content"]', |
||||
'body' # Fallback |
||||
] |
||||
|
||||
for selector in selectors: |
||||
try: |
||||
element = await page.query_selector(selector) |
||||
if element: |
||||
return True |
||||
except Exception: |
||||
continue |
||||
|
||||
# Fallback if no selector is found within a certain time |
||||
if time.time() - start_time < 30: # If we haven't used the full timeout |
||||
await page.wait_for_timeout(30000 - int(time.time() - start_time)) |
||||
|
||||
return True # Page likely loaded |
||||
except Exception as e: |
||||
logging.error(f"Error loading page {url}: {e}") |
||||
return False |
||||
|
||||
@SCRAPE_DURATION.time() |
||||
async def scrape_with_retry(self): |
||||
"""Main function with retry mechanism and browser reuse""" |
||||
SCRAPE_ATTEMPTS.inc() |
||||
last_error = None |
||||
browser = None |
||||
context = None |
||||
page = None |
||||
|
||||
try: |
||||
async with async_playwright() as p: |
||||
launch_args = { |
||||
"headless": self.headless, |
||||
"args": [ |
||||
"--disable-blink-features=AutomationControlled", |
||||
"--single-process", |
||||
"--no-sandbox", |
||||
f"--user-agent={random.choice(self.user_agents)}" |
||||
], |
||||
"executable_path": self.BROWSER_EXECUTABLE |
||||
} |
||||
if self.proxy_servers: |
||||
proxy_url = random.choice(self.proxy_servers) |
||||
proxy_config = {"server": proxy_url} |
||||
proxy_username = os.getenv('PROXY_USER') |
||||
proxy_password = os.getenv('PROXY_PASS') |
||||
if proxy_username and proxy_password: |
||||
proxy_config['username'] = proxy_username |
||||
proxy_config['password'] = proxy_password |
||||
launch_args['proxy'] = proxy_config |
||||
|
||||
browser = await p.chromium.launch(**launch_args) |
||||
context = await browser.new_context( |
||||
user_agent=random.choice(self.user_agents), |
||||
viewport={"width": 1366, "height": 768}, |
||||
locale=os.getenv("BROWSER_LOCALE", "en-US") |
||||
) |
||||
await context.route("**/*", lambda route: route.continue_()) |
||||
page = await context.new_page() |
||||
await page.add_init_script(""" |
||||
Object.defineProperty(navigator, 'webdriver', { get: () => false }); |
||||
window.navigator.chrome = { runtime: {}, app: { isInstalled: false } }; |
||||
""") |
||||
|
||||
for attempt in range(self.retry_count): |
||||
try: |
||||
logging.info( |
||||
f"Attempt {attempt + 1}: Loading OpenAI...") |
||||
if not await self.load_page(page, "https://openai.com"): |
||||
raise ScrapingError( |
||||
"Failed to load key content on OpenAI website.") |
||||
await self.human_interaction(page) |
||||
await page.screenshot(path=f"openai_debug_{attempt}.png") |
||||
content = await page.evaluate("""() => { |
||||
const selectors = [ |
||||
'main article', |
||||
'#main-content', |
||||
'section:first-of-type', |
||||
'div[class*="content"]' |
||||
]; |
||||
|
||||
let content = ''; |
||||
for (const selector of selectors) { |
||||
const element = document.querySelector(selector); |
||||
if (element) { |
||||
content += element.innerText + '\\n\\n'; |
||||
} |
||||
} |
||||
return content.trim() || document.body.innerText; |
||||
}""") |
||||
if not content.strip(): |
||||
raise ContentAnalysisError( |
||||
"No content extracted from the page.") |
||||
return content[:self.MAX_CONTENT_LENGTH] |
||||
|
||||
except (ScrapingError, ContentAnalysisError) as e: |
||||
last_error = e |
||||
logging.warning( |
||||
f"Attempt {attempt + 1} failed: {str(e)}") |
||||
if attempt < self.retry_count - 1: |
||||
await asyncio.sleep(5) |
||||
else: |
||||
if browser: |
||||
await browser.close() |
||||
browser = None |
||||
raise |
||||
except Exception as e: |
||||
last_error = e |
||||
logging.exception(f"Unexpected error on attempt { |
||||
attempt + 1}: {str(e)}") |
||||
if attempt < self.retry_count - 1: |
||||
await asyncio.sleep(5) |
||||
else: |
||||
if browser: |
||||
await browser.close() |
||||
browser = None |
||||
raise |
||||
|
||||
except Exception as e: |
||||
last_error = e |
||||
finally: |
||||
if browser: |
||||
await browser.close() |
||||
|
||||
raise last_error if last_error else Exception( |
||||
"All scraping attempts failed.") |
||||
|
||||
async def get_cached_content(self): |
||||
key = 'openai_content_cache_key' |
||||
content = cache.get(key) |
||||
if content is None: |
||||
content = await self.scrape_with_retry() |
||||
cache.set(key, content, expire=int( |
||||
os.getenv("CACHE_EXPIRY", 3600))) |
||||
return content |
||||
|
||||
|
||||
async def analyze_content(headless=True): |
||||
try: |
||||
scraper = EnhancedOpenAIScraper(headless=headless) |
||||
content = await scraper.get_cached_content() |
||||
|
||||
client = OpenAI(api_key=EnhancedOpenAIScraper.API_KEY) |
||||
if not client.api_key: |
||||
raise ContentAnalysisError( |
||||
"OpenAI API key not configured (check environment variables).") |
||||
|
||||
prompt_template = """ |
||||
Analyze the following website content and extract the following information if present: |
||||
|
||||
1. **Overall Summary of the Website:** Provide a concise overview of the website's purpose and the main topics discussed. |
||||
2. **Key Individuals or Entities:** Identify and briefly describe any prominent individuals, companies, or organizations mentioned. |
||||
3. **Recent Announcements or Updates:** List any recent announcements, news, or updates found on the website, including dates if available. |
||||
4. **Main Topics or Themes:** Identify the primary subjects or themes explored on the website. |
||||
5. **Any Noteworthy Features or Projects:** Highlight any significant features, projects, or initiatives mentioned. |
||||
|
||||
Format the output clearly under each of these headings. If a particular piece of information is not found, indicate that it is not present. |
||||
|
||||
Content: |
||||
{content} |
||||
""" |
||||
|
||||
formatted_prompt = prompt_template.format(content=content) |
||||
model_name = os.getenv("OPENAI_MODEL", "gpt-4-turbo") |
||||
temperature = float(os.getenv("MODEL_TEMPERATURE", 0.3)) |
||||
max_tokens = int(os.getenv("MAX_TOKENS", 1500)) |
||||
top_p = float(os.getenv("MODEL_TOP_P", 0.9)) |
||||
|
||||
response = client.chat.completions.create( |
||||
model=model_name, |
||||
messages=[ |
||||
{"role": "system", "content": "You are a helpful assistant that analyzes website content and extracts key information in a structured format."}, |
||||
{"role": "user", "content": formatted_prompt} |
||||
], |
||||
temperature=temperature, |
||||
max_tokens=max_tokens, |
||||
top_p=top_p |
||||
) |
||||
|
||||
if not response.choices: |
||||
raise ContentAnalysisError("Empty response from GPT.") |
||||
|
||||
return response.choices[0].message.content |
||||
|
||||
except (ScrapingError, ContentAnalysisError) as e: |
||||
logging.error(f"Analysis failed: {str(e)}") |
||||
return f"Critical analysis error: {str(e)}" |
||||
except Exception as e: |
||||
logging.exception("Unexpected error during analysis.") |
||||
return f"Unexpected analysis error: {str(e)}" |
||||
|
||||
|
||||
async def main(): |
||||
logging.basicConfig( |
||||
level=os.getenv("LOG_LEVEL", "INFO").upper(), |
||||
format='%(asctime)s - %(levelname)s - %(message)s' |
||||
) |
||||
|
||||
# Start Prometheus HTTP server for exposing metrics |
||||
try: |
||||
prometheus_port = int(os.getenv("PROMETHEUS_PORT", 8000)) |
||||
start_http_server(prometheus_port) |
||||
logging.info(f"Prometheus metrics server started on port { |
||||
prometheus_port}") |
||||
except Exception as e: |
||||
logging.warning(f"Failed to start Prometheus metrics server: {e}") |
||||
|
||||
start_time = time.time() |
||||
result = await analyze_content(headless=True) |
||||
end_time = time.time() |
||||
|
||||
print(f"\nAnalysis completed in {end_time - start_time:.2f} seconds\n") |
||||
print(result) |
||||
|
||||
if __name__ == "__main__": |
||||
asyncio.run(main()) |
Loading…
Reference in new issue