1 changed files with 435 additions and 0 deletions
@ -0,0 +1,435 @@
|
||||
{ |
||||
"cells": [ |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9", |
||||
"metadata": { |
||||
"jp-MarkdownHeadingCollapsed": true |
||||
}, |
||||
"source": [ |
||||
"# Welcome to your first assignment!\n", |
||||
"\n", |
||||
"Instructions are below. Please give this a try, and look in the solutions folder if you get stuck (or feel free to ask me!)" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "ada885d9-4d42-4d9b-97f0-74fbbbfe93a9", |
||||
"metadata": { |
||||
"jupyter": { |
||||
"source_hidden": true |
||||
} |
||||
}, |
||||
"source": [ |
||||
"<table style=\"margin: 0; text-align: left;\">\n", |
||||
" <tr>\n", |
||||
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n", |
||||
" <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n", |
||||
" </td>\n", |
||||
" <td>\n", |
||||
" <h2 style=\"color:#f71;\">Just before we get to the assignment --</h2>\n", |
||||
" <span style=\"color:#f71;\">I thought I'd take a second to point you at this page of useful resources for the course. This includes links to all the slides.<br/>\n", |
||||
" <a href=\"https://edwarddonner.com/2024/11/13/llm-engineering-resources/\">https://edwarddonner.com/2024/11/13/llm-engineering-resources/</a><br/>\n", |
||||
" Please keep this bookmarked, and I'll continue to add more useful links there over time.\n", |
||||
" </span>\n", |
||||
" </td>\n", |
||||
" </tr>\n", |
||||
"</table>" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "6e9fa1fc-eac5-4d1d-9be4-541b3f2b3458", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"# HOMEWORK EXERCISE ASSIGNMENT\n", |
||||
"\n", |
||||
"Upgrade the day 1 project to summarize a webpage to use an Open Source model running locally via Ollama rather than OpenAI\n", |
||||
"\n", |
||||
"You'll be able to use this technique for all subsequent projects if you'd prefer not to use paid APIs.\n", |
||||
"\n", |
||||
"**Benefits:**\n", |
||||
"1. No API charges - open-source\n", |
||||
"2. Data doesn't leave your box\n", |
||||
"\n", |
||||
"**Disadvantages:**\n", |
||||
"1. Significantly less power than Frontier Model\n", |
||||
"\n", |
||||
"## Recap on installation of Ollama\n", |
||||
"\n", |
||||
"Simply visit [ollama.com](https://ollama.com) and install!\n", |
||||
"\n", |
||||
"Once complete, the ollama server should already be running locally. \n", |
||||
"If you visit: \n", |
||||
"[http://localhost:11434/](http://localhost:11434/)\n", |
||||
"\n", |
||||
"You should see the message `Ollama is running`. \n", |
||||
"\n", |
||||
"If not, bring up a new Terminal (Mac) or Powershell (Windows) and enter `ollama serve` \n", |
||||
"And in another Terminal (Mac) or Powershell (Windows), enter `ollama pull llama3.2` \n", |
||||
"Then try [http://localhost:11434/](http://localhost:11434/) again.\n", |
||||
"\n", |
||||
"If Ollama is slow on your machine, try using `llama3.2:1b` as an alternative. Run `ollama pull llama3.2:1b` from a Terminal or Powershell, and change the code below from `MODEL = \"llama3.2\"` to `MODEL = \"llama3.2:1b\"`" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# imports\n", |
||||
"\n", |
||||
"import requests\n", |
||||
"from bs4 import BeautifulSoup\n", |
||||
"from IPython.display import Markdown, display" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "29ddd15d-a3c5-4f4e-a678-873f56162724", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Constants\n", |
||||
"\n", |
||||
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
||||
"HEADERS = {\"Content-Type\": \"application/json\"}\n", |
||||
"MODEL = \"llama3.2\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "dac0a679-599c-441f-9bf2-ddc73d35b940", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Create a messages list using the same format that we used for OpenAI\n", |
||||
"\n", |
||||
"messages = [\n", |
||||
" {\"role\": \"user\", \"content\": \"Describe some of the business applications of Generative AI\"}\n", |
||||
"]" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "7bb9c624-14f0-4945-a719-8ddb64f66f47", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"payload = {\n", |
||||
" \"model\": MODEL,\n", |
||||
" \"messages\": messages,\n", |
||||
" \"stream\": False\n", |
||||
" }" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "479ff514-e8bd-4985-a572-2ea28bb4fa40", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Let's just make sure the model is loaded\n", |
||||
"\n", |
||||
"!ollama pull llama3.2" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "42b9f644-522d-4e05-a691-56e7658c0ea9", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# If this doesn't work for any reason, try the 2 versions in the following cells\n", |
||||
"# And double check the instructions in the 'Recap on installation of Ollama' at the top of this lab\n", |
||||
"# And if none of that works - contact me!\n", |
||||
"\n", |
||||
"response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n", |
||||
"print(response.json()['message']['content'])" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "6a021f13-d6a1-4b96-8e18-4eae49d876fe", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"# Introducing the ollama package\n", |
||||
"\n", |
||||
"And now we'll do the same thing, but using the elegant ollama python package instead of a direct HTTP call.\n", |
||||
"\n", |
||||
"Under the hood, it's making the same call as above to the ollama server running at localhost:11434" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "7745b9c4-57dc-4867-9180-61fa5db55eb8", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"import ollama\n", |
||||
"\n", |
||||
"response = ollama.chat(model=MODEL, messages=messages)\n", |
||||
"print(response['message']['content'])" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "a4704e10-f5fb-4c15-a935-f046c06fb13d", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Alternative approach - using OpenAI python library to connect to Ollama" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "23057e00-b6fc-4678-93a9-6b31cb704bff", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# There's actually an alternative approach that some people might prefer\n", |
||||
"# You can use the OpenAI client python library to call Ollama:\n", |
||||
"\n", |
||||
"from openai import OpenAI\n", |
||||
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", |
||||
"\n", |
||||
"response = ollama_via_openai.chat.completions.create(\n", |
||||
" model=MODEL,\n", |
||||
" messages=messages\n", |
||||
")\n", |
||||
"\n", |
||||
"print(response.choices[0].message.content)" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "bc7d1de3-e2ac-46ff-a302-3b4ba38c4c90", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Also trying the amazing reasoning model DeepSeek\n", |
||||
"\n", |
||||
"Here we use the version of DeepSeek-reasoner that's been distilled to 1.5B. \n", |
||||
"This is actually a 1.5B variant of Qwen that has been fine-tuned using synethic data generated by Deepseek R1.\n", |
||||
"\n", |
||||
"Other sizes of DeepSeek are [here](https://ollama.com/library/deepseek-r1) all the way up to the full 671B parameter version, which would use up 404GB of your drive and is far too large for most!" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "cf9eb44e-fe5b-47aa-b719-0bb63669ab3d", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"!ollama pull deepseek-r1:1.5b" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "1d3d554b-e00d-4c08-9300-45e073950a76", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# This may take a few minutes to run! You should then see a fascinating \"thinking\" trace inside <think> tags, followed by some decent definitions\n", |
||||
"\n", |
||||
"response = ollama_via_openai.chat.completions.create(\n", |
||||
" model=\"deepseek-r1:1.5b\",\n", |
||||
" messages=[{\"role\": \"user\", \"content\": \"Please give definitions of some core concepts behind LLMs: a neural network, attention and the transformer\"}]\n", |
||||
")\n", |
||||
"\n", |
||||
"print(response.choices[0].message.content)" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "1622d9bb-5c68-4d4e-9ca4-b492c751f898", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"# NOW the exercise for you\n", |
||||
"\n", |
||||
"Take the code from day1 and incorporate it here, to build a website summarizer that uses Llama 3.2 running locally instead of OpenAI; use either of the above approaches." |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 1, |
||||
"id": "6de38216-6d1c-48c4-877b-86d403f4e0f8", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"import os\n", |
||||
"import requests\n", |
||||
"from dotenv import load_dotenv\n", |
||||
"from bs4 import BeautifulSoup\n", |
||||
"from IPython.display import Markdown, display\n", |
||||
"from openai import OpenAI\n", |
||||
"\n", |
||||
"load_dotenv(override=True)\n", |
||||
"api_key = os.getenv('OPENAI_API_KEY')\n", |
||||
"\n", |
||||
"HEADERS = {\n", |
||||
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\",\n", |
||||
" \"Content-Type\": \"application/json\"\n", |
||||
"}\n", |
||||
"\n", |
||||
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n", |
||||
"\n", |
||||
"MODEL = \"llama3.2\"\n", |
||||
"\n", |
||||
"system_prompt = \"Sei un assistente e analizzi il contenuto di un sito web \\\n", |
||||
"produci un breve sommario, ignora il testo o gli elementi relativi alla navigazione. \\\n", |
||||
"Rispondi markdown.\"\n" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 2, |
||||
"id": "6f343c27-628c-4c54-9a5b-842e6ad5d176", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"class Website:\n", |
||||
"\n", |
||||
" def __init__(self, url):\n", |
||||
" \"\"\"\n", |
||||
" Create this Website object from the given url using the BeautifulSoup library\n", |
||||
" \"\"\"\n", |
||||
" self.url = url\n", |
||||
" response = requests.get(url, headers=HEADERS)\n", |
||||
" soup = BeautifulSoup(response.content, 'html.parser')\n", |
||||
" self.title = soup.title.string if soup.title else \"No title found\"\n", |
||||
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", |
||||
" irrelevant.decompose()\n", |
||||
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 4, |
||||
"id": "bf6245ca-2d53-4fd8-a19c-0e6d052031fd", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def user_prompt_for(website):\n", |
||||
" user_prompt = f\"Stai cercando un sito dal titolo: {website.title}\"\n", |
||||
" user_prompt += \"\\nI contenuti di questo sito web sono i seguenti: \\\n", |
||||
"Per favore, fornisci un breve riassunto di questo sito web in markdown. \\\n", |
||||
"Se include notizie o annunci, riassumili anch'essi. \\n\\n\"\n", |
||||
" user_prompt += website.text\n", |
||||
" return user_prompt" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 6, |
||||
"id": "dec0636f-9efc-4f91-8861-3141276a9a6e", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def messages_for(website):\n", |
||||
" return [\n", |
||||
" {\"role\": \"system\", \"content\": system_prompt},\n", |
||||
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", |
||||
" ]" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 8, |
||||
"id": "f894b232-1ea1-4bd9-bf44-d7b1571f7913", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def summarize(url):\n", |
||||
" ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", |
||||
" \n", |
||||
" website = Website(url)\n", |
||||
" response = ollama_via_openai.chat.completions.create(\n", |
||||
" model=MODEL,\n", |
||||
" messages=messages_for(website)\n", |
||||
" )\n", |
||||
" return response.choices[0].message.content\n" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 13, |
||||
"id": "d868d778-13b5-4934-acf5-dcb919a27d59", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def display_summary(url):\n", |
||||
" summary = summarize(url)\n", |
||||
" display(Markdown(summary))" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": 14, |
||||
"id": "0a0d9b79-de3c-4f77-9254-f02cf4d6217a", |
||||
"metadata": {}, |
||||
"outputs": [ |
||||
{ |
||||
"data": { |
||||
"text/markdown": [ |
||||
"**Sommario del sito WP Pisa - Il sito del Meetup WordPress di Pisa**\n", |
||||
"\n", |
||||
"Il sito web WP Pisa è il punto di riferimento per gli appassionati di WordPress a Pisa. Gli organizzatori offrono meetup mensili gratuiti per discutere conoscenze, esperienze e progetti correlati al mondo di WordPress.\n", |
||||
"\n", |
||||
"**Eventi e Annunci**\n", |
||||
"\n", |
||||
"* **WordCamp Pisa 2025**: Aperta la call for organizer\n", |
||||
"* **Il Tuo Sito Ovunque in Pochi Minuti**: Un incontro con Docker e sviluppatori WordPress - Partecipa!\n", |
||||
"* **Core Days Roma: Le novità sul core di WordPress per i dev**\n", |
||||
"* **NO MORE THUMBNAILS!**\n", |
||||
"\n", |
||||
"**Informazioni Generali**\n", |
||||
"\n", |
||||
"* Il meetuu è aperto a tutti, indipendentemente dal livello di competenza in WordPress\n", |
||||
"* Tutti gli eventi sono gratuiti e organizzati con la supervisione di WordPress Foundation tramite la piattaforma Meetup.com\n", |
||||
"* La comunità WP Pisa contiene 150+ iscritti" |
||||
], |
||||
"text/plain": [ |
||||
"<IPython.core.display.Markdown object>" |
||||
] |
||||
}, |
||||
"metadata": {}, |
||||
"output_type": "display_data" |
||||
} |
||||
], |
||||
"source": [ |
||||
"display_summary(\"https://wppisa.it/\")" |
||||
] |
||||
} |
||||
], |
||||
"metadata": { |
||||
"kernelspec": { |
||||
"display_name": "Python 3 (ipykernel)", |
||||
"language": "python", |
||||
"name": "python3" |
||||
}, |
||||
"language_info": { |
||||
"codemirror_mode": { |
||||
"name": "ipython", |
||||
"version": 3 |
||||
}, |
||||
"file_extension": ".py", |
||||
"mimetype": "text/x-python", |
||||
"name": "python", |
||||
"nbconvert_exporter": "python", |
||||
"pygments_lexer": "ipython3", |
||||
"version": "3.11.11" |
||||
} |
||||
}, |
||||
"nbformat": 4, |
||||
"nbformat_minor": 5 |
||||
} |
Loading…
Reference in new issue