9 changed files with 391 additions and 0 deletions
@ -0,0 +1,47 @@
|
||||
# Run Continuous Integration (CI) Tests on Modal |
||||
|
||||
Note! |
||||
The HF secret in Modal is named "huggingface-secret". Pls rename if your secret has another name. |
||||
|
||||
## Test modal deployment |
||||
You can test pricer.ci in Modal: |
||||
(`modal deploy -m pricer.ci`) |
||||
In python CLI: |
||||
(`import modal`) |
||||
(`Pricer = modal.Cls.lookup("pricer-ci-testing", "Pricer")`) |
||||
(`pricer = Pricer()`) |
||||
(`reply = pricer.price.remote("Quadcast HyperX condenser mic, connects via usb-c to your computer for crystal clear audio")`) |
||||
(`print(reply)`) |
||||
|
||||
## Unit testing |
||||
Unit test strategy created like in |
||||
[This example repo](https://github.com/modal-labs/ci-on-modal) |
||||
|
||||
## Usage |
||||
|
||||
All commands below are run from the root of the repository (this directory). |
||||
|
||||
### Run tests remotely on Modal |
||||
|
||||
```bash |
||||
modal run pricer.ci |
||||
``` |
||||
|
||||
On the first execution, the [container image](https://modal.com/docs/guide/custom-container) |
||||
for your application will be built. |
||||
|
||||
This image will be cached on Modal and only rebuilt if one of its dependencies, |
||||
like the `requirements.txt` file, changes. |
||||
|
||||
### Debug tests running remotely |
||||
|
||||
To debug the tests, you can open a shell |
||||
in the exact same environment that the tests are run in: |
||||
|
||||
```bash |
||||
modal shell pricer.ci |
||||
``` |
||||
|
||||
_Note_: On the Modal worker, the `pytest` command is run from the home directory, `/root`, |
||||
which contains the `tests` folder, but the `modal shell` command will |
||||
drop you at the top of the filesystem, `/`. |
@ -0,0 +1,103 @@
|
||||
from pathlib import Path |
||||
|
||||
import modal |
||||
|
||||
ROOT_PATH = Path(__file__).parent.parent |
||||
|
||||
image = ( |
||||
modal.Image.debian_slim() |
||||
.pip_install("pytest") |
||||
.pip_install_from_requirements(ROOT_PATH / "requirements.txt") |
||||
) |
||||
|
||||
app = modal.App("pricer-ci-testing", image=image) |
||||
|
||||
# mount: add local files to the remote container |
||||
tests = modal.Mount.from_local_dir(ROOT_PATH / "tests", remote_path="/root/tests") |
||||
|
||||
@app.function(gpu="any", mounts=[tests]) |
||||
def pytest(): |
||||
import subprocess |
||||
subprocess.run(["pytest", "-vs"], check=True, cwd="/root") |
||||
|
||||
secrets = [modal.Secret.from_name("huggingface-secret")] |
||||
|
||||
# Constants |
||||
|
||||
GPU = "T4" |
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" |
||||
PROJECT_NAME = "pricer" |
||||
HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results. |
||||
RUN_NAME = "2024-09-13_13.04.39" |
||||
PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}" |
||||
REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36" |
||||
FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}" |
||||
MODEL_DIR = "hf-cache/" |
||||
BASE_DIR = MODEL_DIR + BASE_MODEL |
||||
FINETUNED_DIR = MODEL_DIR + FINETUNED_MODEL |
||||
|
||||
QUESTION = "How much does this cost to the nearest dollar?" |
||||
PREFIX = "Price is $" |
||||
|
||||
@app.cls(image=image, secrets=secrets, gpu=GPU, timeout=1800) |
||||
class Pricer: |
||||
@modal.build() |
||||
def download_model_to_folder(self): |
||||
from huggingface_hub import snapshot_download |
||||
import os |
||||
os.makedirs(MODEL_DIR, exist_ok=True) |
||||
snapshot_download(BASE_MODEL, local_dir=BASE_DIR) |
||||
snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_DIR) |
||||
|
||||
@modal.enter() |
||||
def setup(self): |
||||
import os |
||||
import torch |
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed |
||||
from peft import PeftModel |
||||
|
||||
# Quant Config |
||||
quant_config = BitsAndBytesConfig( |
||||
load_in_4bit=True, |
||||
bnb_4bit_use_double_quant=True, |
||||
bnb_4bit_compute_dtype=torch.bfloat16, |
||||
bnb_4bit_quant_type="nf4" |
||||
) |
||||
|
||||
# Load model and tokenizer |
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(BASE_DIR) |
||||
self.tokenizer.pad_token = self.tokenizer.eos_token |
||||
self.tokenizer.padding_side = "right" |
||||
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained( |
||||
BASE_DIR, |
||||
quantization_config=quant_config, |
||||
device_map="auto" |
||||
) |
||||
|
||||
self.fine_tuned_model = PeftModel.from_pretrained(self.base_model, FINETUNED_DIR, revision=REVISION) |
||||
|
||||
@modal.method() |
||||
def price(self, description: str) -> float: |
||||
import os |
||||
import re |
||||
import torch |
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed |
||||
from peft import PeftModel |
||||
|
||||
set_seed(42) |
||||
prompt = f"{QUESTION}\n\n{description}\n\n{PREFIX}" |
||||
inputs = self.tokenizer.encode(prompt, return_tensors="pt").to("cuda") |
||||
attention_mask = torch.ones(inputs.shape, device="cuda") |
||||
outputs = self.fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) |
||||
result = self.tokenizer.decode(outputs[0]) |
||||
|
||||
contents = result.split("Price is $")[1] |
||||
contents = contents.replace(',','') |
||||
match = re.search(r"[-+]?\d*\.\d+|\d+", contents) |
||||
return float(match.group()) if match else 0 |
||||
|
||||
@modal.method() |
||||
def wake_up(self) -> str: |
||||
return "ok" |
@ -0,0 +1,101 @@
|
||||
from typing import Optional |
||||
from transformers import AutoTokenizer |
||||
import re |
||||
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" |
||||
MIN_TOKENS = 150 |
||||
MAX_TOKENS = 160 |
||||
MIN_CHARS = 300 |
||||
CEILING_CHARS = MAX_TOKENS * 7 |
||||
|
||||
class Item: |
||||
""" |
||||
An Item is a cleaned, curated datapoint of a Product with a Price |
||||
""" |
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) |
||||
PREFIX = "Price is $" |
||||
QUESTION = "How much does this cost to the nearest dollar?" |
||||
REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "] |
||||
|
||||
title: str |
||||
price: float |
||||
category: str |
||||
token_count: int = 0 |
||||
details: Optional[str] |
||||
prompt: Optional[str] = None |
||||
include = False |
||||
|
||||
def __init__(self, data, price): |
||||
self.title = data['title'] |
||||
self.price = price |
||||
self.parse(data) |
||||
|
||||
def scrub_details(self): |
||||
""" |
||||
Clean up the details string by removing common text that doesn't add value |
||||
""" |
||||
details = self.details |
||||
for remove in self.REMOVALS: |
||||
details = details.replace(remove, "") |
||||
return details |
||||
|
||||
def scrub(self, stuff): |
||||
""" |
||||
Clean up the provided text by removing unnecessary characters and whitespace |
||||
Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers |
||||
""" |
||||
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip() |
||||
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",") |
||||
words = stuff.split(' ') |
||||
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)] |
||||
return " ".join(select) |
||||
|
||||
def parse(self, data): |
||||
""" |
||||
Parse this datapoint and if it fits within the allowed Token range, |
||||
then set include to True |
||||
""" |
||||
contents = '\n'.join(data['description']) |
||||
if contents: |
||||
contents += '\n' |
||||
features = '\n'.join(data['features']) |
||||
if features: |
||||
contents += features + '\n' |
||||
self.details = data['details'] |
||||
if self.details: |
||||
contents += self.scrub_details() + '\n' |
||||
if len(contents) > MIN_CHARS: |
||||
contents = contents[:CEILING_CHARS] |
||||
text = f"{self.scrub(self.title)}\n{self.scrub(contents)}" |
||||
tokens = self.tokenizer.encode(text, add_special_tokens=False) |
||||
if len(tokens) > MIN_TOKENS: |
||||
tokens = tokens[:MAX_TOKENS] |
||||
text = self.tokenizer.decode(tokens) |
||||
self.make_prompt(text) |
||||
self.include = True |
||||
|
||||
def make_prompt(self, text): |
||||
""" |
||||
Set the prompt instance variable to be a prompt appropriate for training |
||||
""" |
||||
self.prompt = f"{self.QUESTION}\n\n{text}\n\n" |
||||
self.prompt += f"{self.PREFIX}{str(round(self.price))}.00" |
||||
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False)) |
||||
|
||||
def test_prompt(self): |
||||
""" |
||||
Return a prompt suitable for testing, with the actual price removed |
||||
""" |
||||
return self.prompt.split(self.PREFIX)[0] + self.PREFIX |
||||
|
||||
def __repr__(self): |
||||
""" |
||||
Return a String version of this Item |
||||
""" |
||||
return f"<{self.title} = ${self.price}>" |
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,10 @@
|
||||
import time |
||||
import modal |
||||
from datetime import datetime |
||||
|
||||
Pricer = modal.Cls.lookup("pricer-service", "Pricer") |
||||
pricer = Pricer() |
||||
while True: |
||||
reply = pricer.wake_up.remote() |
||||
print(f"{datetime.now()}: {reply}") |
||||
time.sleep(30) |
@ -0,0 +1,44 @@
|
||||
import modal |
||||
from modal import App, Volume, Image |
||||
|
||||
# Setup |
||||
|
||||
app = modal.App("llama") |
||||
image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate") |
||||
secrets = [modal.Secret.from_name("hf-secret")] |
||||
GPU = "T4" |
||||
MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B" # "google/gemma-2-2b" |
||||
|
||||
|
||||
|
||||
@app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800) |
||||
def generate(prompt: str) -> str: |
||||
import os |
||||
import torch |
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed |
||||
|
||||
# Quant Config |
||||
quant_config = BitsAndBytesConfig( |
||||
load_in_4bit=True, |
||||
bnb_4bit_use_double_quant=True, |
||||
bnb_4bit_compute_dtype=torch.bfloat16, |
||||
bnb_4bit_quant_type="nf4" |
||||
) |
||||
|
||||
# Load model and tokenizer |
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
||||
tokenizer.pad_token = tokenizer.eos_token |
||||
tokenizer.padding_side = "right" |
||||
|
||||
model = AutoModelForCausalLM.from_pretrained( |
||||
MODEL_NAME, |
||||
quantization_config=quant_config, |
||||
device_map="auto" |
||||
) |
||||
|
||||
set_seed(42) |
||||
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda") |
||||
attention_mask = torch.ones(inputs.shape, device="cuda") |
||||
outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) |
||||
return tokenizer.decode(outputs[0]) |
@ -0,0 +1,75 @@
|
||||
import math |
||||
import matplotlib.pyplot as plt |
||||
|
||||
GREEN = "\033[92m" |
||||
YELLOW = "\033[93m" |
||||
RED = "\033[91m" |
||||
RESET = "\033[0m" |
||||
COLOR_MAP = {"red":RED, "orange": YELLOW, "green": GREEN} |
||||
|
||||
class Tester: |
||||
|
||||
def __init__(self, predictor, data, title=None, size=250): |
||||
self.predictor = predictor |
||||
self.data = data |
||||
self.title = title or predictor.__name__.replace("_", " ").title() |
||||
self.size = size |
||||
self.guesses = [] |
||||
self.truths = [] |
||||
self.errors = [] |
||||
self.sles = [] |
||||
self.colors = [] |
||||
|
||||
def color_for(self, error, truth): |
||||
if error<40 or error/truth < 0.2: |
||||
return "green" |
||||
elif error<80 or error/truth < 0.4: |
||||
return "orange" |
||||
else: |
||||
return "red" |
||||
|
||||
def run_datapoint(self, i): |
||||
datapoint = self.data[i] |
||||
guess = self.predictor(datapoint) |
||||
truth = datapoint.price |
||||
error = abs(guess - truth) |
||||
log_error = math.log(truth+1) - math.log(guess+1) |
||||
sle = log_error ** 2 |
||||
color = self.color_for(error, truth) |
||||
title = datapoint.title if len(datapoint.title) <= 40 else datapoint.title[:40]+"..." |
||||
self.guesses.append(guess) |
||||
self.truths.append(truth) |
||||
self.errors.append(error) |
||||
self.sles.append(sle) |
||||
self.colors.append(color) |
||||
print(f"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}") |
||||
|
||||
def chart(self, title): |
||||
max_error = max(self.errors) |
||||
plt.figure(figsize=(12, 8)) |
||||
max_val = max(max(self.truths), max(self.guesses)) |
||||
plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6) |
||||
plt.scatter(self.truths, self.guesses, s=3, c=self.colors) |
||||
plt.xlabel('Ground Truth') |
||||
plt.ylabel('Model Estimate') |
||||
plt.xlim(0, max_val) |
||||
plt.ylim(0, max_val) |
||||
plt.title(title) |
||||
plt.show() |
||||
|
||||
def report(self): |
||||
average_error = sum(self.errors) / self.size |
||||
rmsle = math.sqrt(sum(self.sles) / self.size) |
||||
hits = sum(1 for color in self.colors if color=="green") |
||||
title = f"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%" |
||||
self.chart(title) |
||||
|
||||
def run(self): |
||||
self.error = 0 |
||||
for i in range(self.size): |
||||
self.run_datapoint(i) |
||||
self.report() |
||||
|
||||
@classmethod |
||||
def test(cls, function, data): |
||||
cls(function, data).run() |
@ -0,0 +1,6 @@
|
||||
huggingface |
||||
torch |
||||
transformers |
||||
bitsandbytes |
||||
accelerate |
||||
peft |
Loading…
Reference in new issue