2 changed files with 946 additions and 0 deletions
@ -0,0 +1,293 @@
|
||||
{ |
||||
"cells": [ |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "e3a5643a-c247-4a9b-8c57-ec9b1e89c088", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"# Week 2 - eCommerce Assistant for products price from dictionary\n", |
||||
"\n", |
||||
"An eCommerce assitant that can get a product price\n", |
||||
"\n", |
||||
"Gradio for chat box" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "756573b3-72b2-4102-a773-91c278e5c4fd", |
||||
"metadata": { |
||||
"scrolled": true |
||||
}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# !ollama pull llama3.2" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "57ae8d30-f7aa-47a3-bab8-b7002e87a8f7", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# imports\n", |
||||
"\n", |
||||
"import os\n", |
||||
"import json\n", |
||||
"from dotenv import load_dotenv\n", |
||||
"from openai import OpenAI\n", |
||||
"import gradio as gr" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "ef7f8b2b-1d6a-4bbd-858a-be187ccfc02a", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Initialization\n", |
||||
"\n", |
||||
"load_dotenv(override=True)\n", |
||||
"\n", |
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n", |
||||
"if openai_api_key:\n", |
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", |
||||
"else:\n", |
||||
" print(\"OpenAI API Key not set\")\n", |
||||
" \n", |
||||
"MODEL = \"gpt-4o-mini\"\n", |
||||
"openai = OpenAI()\n", |
||||
"\n", |
||||
"# As an alternative, if you'd like to use Ollama instead of OpenAI\n", |
||||
"# Check that Ollama is running for you locally (see week1/day2 exercise) then uncomment these next 2 lines\n", |
||||
"# MODEL = \"llama3.2\"\n", |
||||
"# openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "7b46dd52-8a3c-42d1-ac24-59f5eb5aaba1", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"system_message = \"You are a helpful assistant for an online store called CommerceAI. \"\n", |
||||
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n", |
||||
"system_message += \"Always be accurate. If you don't know the answer, say so.\"" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "31a6431b-215d-4f46-b813-971d8af7e034", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n", |
||||
"\n", |
||||
"def chat(message, history):\n", |
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", |
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n", |
||||
" return response.choices[0].message.content\n", |
||||
"\n", |
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "d3586bfb-acc3-4b5e-95be-02120b696f98", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Tools\n", |
||||
"\n", |
||||
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n", |
||||
"\n", |
||||
"With tools, you can write a function, and have the LLM call that function as part of its response.\n", |
||||
"\n", |
||||
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n", |
||||
"\n", |
||||
"Well, kinda." |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "c9ac43e8-9880-44f6-b03a-6d1ab05bbb94", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# Let's start by making a useful function\n", |
||||
"\n", |
||||
"items_prices = {f\"item{i}\": f\"{i*100}\" for i in range(1,6)}\n", |
||||
"\n", |
||||
"items_prices = {\"printer\": \"$500\", \"paper\": \"$10\", \"mini printer\": \"$50\", \"label printer\": \"$60\", \"sticker-paper\": \"$5\"}\n", |
||||
"\n", |
||||
"def get_item_price(product):\n", |
||||
" print(f\"Tool get_item_price called for {product}\")\n", |
||||
" item = product.lower()\n", |
||||
" return items_prices.get(item, \"Unknown\")" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "88d249f7-787d-4750-b5b9-7df108da1b57", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"items_prices" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "ef3c3897-9a57-4f04-b5d0-f9ac8bb02d00", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"get_item_price(\"mini printer\")" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "511ef9b8-bec0-4f14-b647-057e14c849cc", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# There's a particular dictionary structure that's required to describe our function:\n", |
||||
"\n", |
||||
"price_function = {\n", |
||||
" \"name\": \"get_item_price\",\n", |
||||
" \"description\": \"Get the price of an item in the store. \\\n", |
||||
" Call this whenever you need to know the store item price , \\\n", |
||||
" for example when a customer asks 'How much is a mini printer' \",\n", |
||||
" \"parameters\": {\n", |
||||
" \"type\": \"object\",\n", |
||||
" \"properties\": {\n", |
||||
" \"product\": {\n", |
||||
" \"type\": \"string\",\n", |
||||
" \"description\": \"The item that the customer wants to buy\"\n", |
||||
" },\n", |
||||
" },\n", |
||||
" \"required\": [\"product\"],\n", |
||||
" \"additionalProperties\": False\n", |
||||
" }\n", |
||||
"}" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "86f674a4-4b7c-443d-b025-0f016932508a", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# And this is included in a list of tools:\n", |
||||
"\n", |
||||
"tools = [{\"type\": \"function\", \"function\": price_function}]" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "markdown", |
||||
"id": "724d0f89-8a86-493e-8cd1-73814688a70b", |
||||
"metadata": {}, |
||||
"source": [ |
||||
"## Getting OpenAI to use our Tool\n", |
||||
"\n", |
||||
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n", |
||||
"\n", |
||||
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n", |
||||
"\n", |
||||
"Here's how the new chat function looks:" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "2d67fb72-132e-499e-9931-86cb71b634b6", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"def chat(message, history):\n", |
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", |
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n", |
||||
"\n", |
||||
" if response.choices[0].finish_reason==\"tool_calls\":\n", |
||||
" message = response.choices[0].message\n", |
||||
" response, item = handle_tool_call(message)\n", |
||||
" print('response', response, 'item', item)\n", |
||||
" messages.append(message)\n", |
||||
" messages.append(response)\n", |
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n", |
||||
" \n", |
||||
" return response.choices[0].message.content" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "3b4de767-954a-4077-a5f7-0055a0b90393", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"# We have to write that function handle_tool_call:\n", |
||||
"\n", |
||||
"def handle_tool_call(message):\n", |
||||
" tool_call = message.tool_calls[0]\n", |
||||
" arguments = json.loads(tool_call.function.arguments)\n", |
||||
" item = arguments.get('product') \n", |
||||
" print('product', item)\n", |
||||
" price = get_item_price(item)\n", |
||||
" response = {\n", |
||||
" \"role\": \"tool\",\n", |
||||
" \"content\": json.dumps({\"item\": item,\"price\": price}),\n", |
||||
" \"tool_call_id\": tool_call.id\n", |
||||
" }\n", |
||||
" return response, item\n", |
||||
" " |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "5ffda702-6ac5-4d13-9703-a14fa93aea68", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [ |
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()" |
||||
] |
||||
}, |
||||
{ |
||||
"cell_type": "code", |
||||
"execution_count": null, |
||||
"id": "0ae2edbf-de58-43fa-b380-267cfc1755de", |
||||
"metadata": {}, |
||||
"outputs": [], |
||||
"source": [] |
||||
} |
||||
], |
||||
"metadata": { |
||||
"kernelspec": { |
||||
"display_name": "Python 3 (ipykernel)", |
||||
"language": "python", |
||||
"name": "python3" |
||||
}, |
||||
"language_info": { |
||||
"codemirror_mode": { |
||||
"name": "ipython", |
||||
"version": 3 |
||||
}, |
||||
"file_extension": ".py", |
||||
"mimetype": "text/x-python", |
||||
"name": "python", |
||||
"nbconvert_exporter": "python", |
||||
"pygments_lexer": "ipython3", |
||||
"version": "3.11.11" |
||||
} |
||||
}, |
||||
"nbformat": 4, |
||||
"nbformat_minor": 5 |
||||
} |
Loading…
Reference in new issue