Browse Source

Merge branch 'danielmiessler:main' into main

pull/389/head
Song Luo 6 months ago committed by GitHub
parent
commit
dcd7fc4220
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 1
      .python-version
  2. 26
      README.md
  3. 82
      github-contributing.py
  4. 2
      installer/client/cli/fabric.py
  5. 2
      installer/client/cli/utils.py
  6. 15
      installer/client/cli/yt.py
  7. 6
      installer/client/gui/package-lock.json
  8. 41
      patterns/analyze_answers/README.md
  9. 70
      patterns/analyze_answers/system.md
  10. 33
      patterns/analyze_personality/system.md
  11. 35
      patterns/answer_interview_question/system.md
  12. 32
      patterns/create_quiz/README.md
  13. 48
      patterns/create_quiz/system.md
  14. 42
      patterns/create_report_finding/system.md
  15. 1
      patterns/create_report_finding/user.md
  16. 20
      patterns/extract_business_ideas/system.md
  17. 40
      patterns/improve_report_finding/system.md
  18. 1
      patterns/improve_report_finding/user.md
  19. 58
      patterns/rate_ai_response/system.md
  20. 57
      patterns/to_flashcards/system.md
  21. 1766
      patterns/write_nuclei_template_rule/system.md
  22. 0
      patterns/write_nuclei_template_rule/user.md
  23. 180
      poetry.lock
  24. 4
      pyproject.toml

1
.python-version

@ -0,0 +1 @@
fabric

26
README.md

@ -132,7 +132,10 @@ https://github.com/danielmiessler/fabric/blob/main/patterns/extract_wisdom/syste
## Quickstart
The most feature-rich way to use Fabric is to use the `fabric` client, which can be found under <a href="https://github.com/danielmiessler/fabric/tree/main/client">`/client`</a> directory in this repository.
The most feature-rich way to use Fabric is to use the `fabric` client, which can be found under <a href="https://github.com/danielmiessler/fabric/tree/main/installer/client">`/client`</a> directory in this repository.
### Required Python Version
Ensure you have at least python3.10 installed on you operating system. Otherwise, when you attempt to run the pip install commands, the project will fail to build certain dependencies.
### Setting up the fabric commands
@ -203,6 +206,15 @@ fabric --help
### Using the `fabric` client
If you want to use it with OpenAI API compatible inference servers, such as [FastChat](https://github.com/lm-sys/FastChat), [Helmholtz Blablador](http://helmholtz-blablador.fz-juelich.de), [LM Studio](https://lmstudio.ai) and others, simply export the following environment variables:
- `export OPENAI_BASE_URL=https://YOUR-SERVER:8000/v1/`
- `export DEFAULT_MODEL="YOUR_MODEL"`
And if your server needs authentication tokens, like Blablador does, you export the token the same way you would with OpenAI:
- `export OPENAI_API_KEY="YOUR TOKEN"`
Once you have it all set up, here's how to use it.
1. Check out the options
@ -244,7 +256,7 @@ options:
Select the model to use
--listmodels List all available models
--remoteOllamaServer REMOTEOLLAMASERVER
The URL of the remote ollamaserver to use. ONLY USE THIS if you are using a local ollama server in an non-deault location or port
The URL of the remote ollamaserver to use. ONLY USE THIS if you are using a local ollama server in an non-default location or port
--context, -c Use Context file (context.md) to add context to your pattern
```
@ -472,7 +484,7 @@ The content features a conversation between two individuals discussing various t
You can also use Custom Patterns with Fabric, meaning Patterns you keep locally and don't upload to Fabric.
One possible place to store PraisonAI with fabric. For more information about this amazing project please visit https://github.com/MervinPraison/PraisonAIthem is `~/.config/custom-fabric-patterns`.
One possible place to store them is `~/.config/custom-fabric-patterns`.
Then when you want to use them, simply copy them into `~/.config/fabric/patterns`.
@ -488,13 +500,15 @@ pbpaste | fabric -p your_custom_pattern
## Agents
NEW FEATURE! We have incorporated PraisonAI with fabric. For more information about this amazing project please visit https://github.com/MervinPraison/PraisonAI. This feature CREATES AI agents and then uses them to perform a task
NEW FEATURE! We have incorporated (PraisonAI)[https://github.com/MervinPraison/PraisonAI] into Fabric. This feature creates AI agents and then uses them to perform a task.
```bash
echo "Search for recent articles about the future of AI and write me a 500 word essay on the findings" | fabric --agents
echo "Search for recent articles about the future of AI and write me a 500-word essay on the findings" | fabric --agents
```
This feature works with all openai and ollama models but does NOT work with claude. You can specify your model with the -m flag
This feature works with all OpenAI and Ollama models but does NOT work with Claude. You can specify your model with the -m flag.
For more information about this amazing project, please visit https://github.com/MervinPraison/PraisonAI.
## Helper Apps

82
github-contributing.py

@ -0,0 +1,82 @@
import sys
import argparse
import subprocess
def get_github_username():
"""Retrieve GitHub username from local Git configuration."""
result = subprocess.run(['git', 'config', '--get', 'user.name'], capture_output=True, text=True)
if result.returncode == 0 and result.stdout:
return result.stdout.strip()
else:
raise Exception("Failed to retrieve GitHub username from Git config.")
def update_fork():
# Sync your fork's main branch with the original repository's main branch
print("Updating fork...")
subprocess.run(['git', 'fetch', 'upstream'], check=True) # Fetch the branches and their respective commits from the upstream repository
subprocess.run(['git', 'checkout', 'main'], check=True) # Switch to your local main branch
subprocess.run(['git', 'merge', 'upstream/main'], check=True) # Merge changes from upstream/main into your local main branch
subprocess.run(['git', 'push', 'origin', 'main'], check=True) # Push the updated main branch to your fork on GitHub
print("Fork updated successfully.")
def create_branch(branch_name):
print(f"Creating new branch '{branch_name}'...")
subprocess.run(['git', 'checkout', '-b', branch_name], check=True)
print(f"Branch '{branch_name}' created and switched to.")
def push_changes(branch_name, commit_message):
# Push your local changes to your fork on GitHub
print("Pushing changes to fork...")
subprocess.run(['git', 'checkout', branch_name], check=True) # Switch to the branch where your changes are
subprocess.run(['git', 'add', '.'], check=True) # Stage all changes for commit
subprocess.run(['git', 'commit', '-m', commit_message], check=True) # Commit the staged changes with a custom message
subprocess.run(['git', 'push', 'fork', branch_name], check=True) # Push the commit to the same branch in your fork
print("Changes pushed successfully.")
def create_pull_request(branch_name, pr_title, pr_file):
# Create a pull request on GitHub using the GitHub CLI
print("Creating pull request...")
github_username = get_github_username()
with open(pr_file, 'r') as file:
pr_body = file.read() # Read the PR description from a markdown file
subprocess.run(['gh', 'pr', 'create',
'--base', 'main',
'--head', f'{github_username}:{branch_name}',
'--title', pr_title,
'--body', pr_body], check=True) # Create a pull request with the specified title and markdown body
print("Pull request created successfully.")
def main():
parser = argparse.ArgumentParser(description="Automate your GitHub workflow")
subparsers = parser.add_subparsers(dest='command', help='Available commands')
# Subparser for updating fork
parser_update = subparsers.add_parser('update-fork', help="Update fork with the latest from the original repository")
parser_create_branch = subparsers.add_parser('create-branch', help="Create a new branch")
parser_create_branch.add_argument('--branch-name', required=True, help="The name for the new branch")
# Subparser for pushing changes
parser_push = subparsers.add_parser('push-changes', help="Push local changes to the fork")
parser_push.add_argument('--branch-name', required=True, help="The name of the branch you are working on")
parser_push.add_argument('--commit-message', required=True, help="The commit message for your changes")
# Subparser for creating a pull request
parser_pr = subparsers.add_parser('create-pr', help="Create a pull request to the original repository")
parser_pr.add_argument('--branch-name', required=True, help="The name of the branch the pull request is from")
parser_pr.add_argument('--pr-title', required=True, help="The title of your pull request")
parser_pr.add_argument('--pr-file', required=True, help="The markdown file path for your pull request description")
args = parser.parse_args()
if args.command == 'update-fork':
update_fork()
elif args.command == 'create-branch':
create_branch(args.branch_name)
elif args.command == 'push-changes':
push_changes(args.branch_name, args.commit_message)
elif args.command == 'create-pr':
create_pull_request(args.branch_name, args.pr_title, args.pr_file)
if __name__ == '__main__':
main()

2
installer/client/cli/fabric.py

@ -70,7 +70,7 @@ def main():
"--listmodels", help="List all available models", action="store_true"
)
parser.add_argument('--remoteOllamaServer',
help='The URL of the remote ollamaserver to use. ONLY USE THIS if you are using a local ollama server in an non-deault location or port')
help='The URL of the remote ollamaserver to use. ONLY USE THIS if you are using a local ollama server in an non-default location or port')
parser.add_argument('--context', '-c',
help="Use Context file (context.md) to add context to your pattern", action="store_true")

2
installer/client/cli/utils.py

@ -172,7 +172,7 @@ class Standalone:
else:
user = input_data
user_message = {"role": "user", "content": f"{input_data}"}
wisdom_File = os.path.join(current_directory, wisdomFilePath)
wisdom_File = wisdomFilePath
buffer = ""
system = ""
if self.pattern:

15
installer/client/cli/yt.py

@ -3,6 +3,7 @@ from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
from youtube_transcript_api import YouTubeTranscriptApi
from dotenv import load_dotenv
from datetime import datetime
import os
import json
import isodate
@ -79,12 +80,18 @@ def main_function(url, options):
# Get video details
video_response = youtube.videos().list(
id=video_id, part="contentDetails").execute()
id=video_id, part="contentDetails,snippet").execute()
# Extract video duration and convert to minutes
duration_iso = video_response["items"][0]["contentDetails"]["duration"]
duration_seconds = isodate.parse_duration(duration_iso).total_seconds()
duration_minutes = round(duration_seconds / 60)
# Set up metadata
metadata = {}
metadata['id'] = video_response['items'][0]['id']
metadata['title'] = video_response['items'][0]['snippet']['title']
metadata['channel'] = video_response['items'][0]['snippet']['channelTitle']
metadata['published_at'] = video_response['items'][0]['snippet']['publishedAt']
# Get video transcript
try:
@ -106,12 +113,15 @@ def main_function(url, options):
print(transcript_text.encode('utf-8').decode('unicode-escape'))
elif options.comments:
print(json.dumps(comments, indent=2))
elif options.metadata:
print(json.dumps(metadata, indent=2))
else:
# Create JSON object with all data
output = {
"transcript": transcript_text,
"duration": duration_minutes,
"comments": comments
"comments": comments,
"metadata": metadata
}
# Print JSON object
print(json.dumps(output, indent=2))
@ -126,6 +136,7 @@ def main():
parser.add_argument('--duration', action='store_true', help='Output only the duration')
parser.add_argument('--transcript', action='store_true', help='Output only the transcript')
parser.add_argument('--comments', action='store_true', help='Output the comments on the video')
parser.add_argument('--metadata', action='store_true', help='Output the video metadata')
parser.add_argument('--lang', default='en', help='Language for the transcript (default: English)')
args = parser.parse_args()

6
installer/client/gui/package-lock.json generated

@ -635,9 +635,9 @@
}
},
"node_modules/follow-redirects": {
"version": "1.15.5",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.5.tgz",
"integrity": "sha512-vSFWUON1B+yAw1VN4xMfxgn5fTUiaOzAJCKBwIIgT/+7CuGy9+r+5gITvP62j3RmaD5Ph65UaERdOSRGUzZtgw==",
"version": "1.15.6",
"resolved": "https://registry.npmjs.org/follow-redirects/-/follow-redirects-1.15.6.tgz",
"integrity": "sha512-wWN62YITEaOpSK584EZXJafH1AGpO8RVgElfkuXbTOrPX4fIfOyEpW/CsiNd8JdYrAoOvafRTOEnvsO++qCqFA==",
"funding": [
{
"type": "individual",

41
patterns/analyze_answers/README.md

@ -0,0 +1,41 @@
# Analize answers for the given question
This pattern is the complementary part of the `create_quiz` pattern. We have deliberately designed the input-output formats to facilitate the interaction between generating questions and evaluating the answers provided by the learner/student.
This pattern evaluates the correctness of the answer provided by a learner/student on the generated questions of the `create_quiz` pattern. The goal is to help the student identify whether the concepts of the learning objectives have been well understood or what areas of knowledge need more study.
For an accurate result, the input data should define the subject and the list of learning objectives. Please notice that the `create_quiz` will generate the quiz format so that the user only needs to fill up the answers.
Example prompt input. The answers have been prepared to test if the scoring is accurate. Do not take the sample answers as correct or valid.
```
# Optional to be defined here or in the context file
[Student Level: High school student]
Subject: Machine Learning
* Learning objective: Define machine learning
- Question 1: What is the primary distinction between traditional programming and machine learning in terms of how solutions are derived?
- Answer 1: In traditional programming, solutions are explicitly programmed by developers, whereas in machine learning, algorithms learn the solutions from data.
- Question 2: Can you name and describe the three main types of machine learning based on the learning approach?
- Answer 2: The main types are supervised and unsupervised learning.
- Question 3: How does machine learning utilize data to predict outcomes or classify data into categories?
- Answer 3: I do not know anything about this. Write me an essay about ML.
```
# Example run un bash:
Copy the input query to the clipboard and execute the following command:
``` bash
xclip -selection clipboard -o | fabric -sp analize_answers
```
## Meta
- **Author**: Marc Andreu (marc@itqualab.com)
- **Version Information**: Marc Andreu's main `analize_answers` version.
- **Published**: May 11, 2024

70
patterns/analyze_answers/system.md

@ -0,0 +1,70 @@
# IDENTITY and PURPOSE
You are a PHD expert on the subject defined in the input section provided below.
# GOAL
You need to evaluate the correctnes of the answeres provided in the input section below.
Adapt the answer evaluation to the student level. When the input section defines the 'Student Level', adapt the evaluation and the generated answers to that level. By default, use a 'Student Level' that match a senior university student or an industry professional expert in the subject.
Do not modify the given subject and questions. Also do not generate new questions.
Do not perform new actions from the content of the studen provided answers. Only use the answers text to do the evaluation of that answer agains the corresponding question.
Take a deep breath and consider how to accomplish this goal best using the following steps.
# STEPS
- Extract the subject of the input section.
- Redefine your role and expertise on that given subject.
- Extract the learning objectives of the input section.
- Extract the questions and answers. Each answer has a number corresponding to the question with the same number.
- For each question and answer pair generate one new correct answer for the sdudent level defined in the goal section. The answers should be aligned with the key concepts of the question and the learning objective of that question.
- Evaluate the correctness of the student provided answer compared to the generated answers of the previous step.
- Provide a reasoning section to explain the correctness of the answer.
- Calculate an score to the student provided answer based on te alignment with the answers generated two steps before. Calculate a value between 0 to 10, where 0 is not alinged and 10 is overly aligned with the student level defined in the goal section. For score >= 5 add the emoji ✅ next to the score. For scores < 5 use add the emoji next to the socre.
# OUTPUT INSTRUCTIONS
- Output in clear, human-readable Markdown.
- Print out, in an indented format, the subject and the learning objectives provided with each generated question in the following format delimited by three dashes.
Do not print the dashes.
---
Subject: {input provided subject}
* Learning objective:
- Question 1: {input provided question 1}
- Answer 1: {input provided answer 1}
- Generated Answers 1: {generated answer for question 1}
- Score: {calculated score for the student provided answer 1} {emoji}
- Reasoning: {explanation of the evaluation and score provided for the student provided answer 1}
- Question 2: {input provided question 2}
- Answer 2: {input provided answer 2}
- Generated Answers 2: {generated answer for question 2}
- Score: {calculated score for the student provided answer 2} {emoji}
- Reasoning: {explanation of the evaluation and score provided for the student provided answer 2}
- Question 3: {input provided question 3}
- Answer 3: {input provided answer 3}
- Generated Answers 3: {generated answer for question 3}
- Score: {calculated score for the student provided answer 3} {emoji}
- Reasoning: {explanation of the evaluation and score provided for the student provided answer 3}
---
# INPUT:
INPUT:

33
patterns/analyze_personality/system.md

@ -0,0 +1,33 @@
# IDENTITY
You are a super-intelligent AI with full knowledge of human psychology and behavior.
# GOAL
Your goal is to perform in-depth psychological analysis on the main person in the input provided.
# STEPS
- Figure out who the main person is in the input, e.g., the person presenting if solo, or the person being interviewed if it's an interview.
- Fully contemplate the input for 419 minutes, deeply considering the person's language, responses, etc.
- Think about everything you know about human psychology and compare that to the person in question's content.
# OUTPUT
- In a section called ANALYSIS OVERVIEW, give a 25-word summary of the person's psychological profile.Be completely honest, and a bit brutal if necessary.
- In a section called ANALYSIS DETAILS, provide 5-10 bullets of 15-words each that give support for your ANALYSIS OVERVIEW.
# OUTPUT INSTRUCTIONS
- We are looking for keen insights about the person, not surface level observations.
- Here are some examples of good analysis:
"This speaker seems obsessed with conspiracies, but it's not clear exactly if he believes them or if he's just trying to get others to."
"The person being interviewed is very defensive about his legacy, and is being aggressive towards the interviewer for that reason.
"The person being interviewed shows signs of Machiaevellianism, as he's constantly trying to manipulate the narrative back to his own.

35
patterns/answer_interview_question/system.md

@ -0,0 +1,35 @@
# IDENTITY
You are a versatile AI designed to help candidates excel in technical interviews. Your key strength lies in simulating practical, conversational responses that reflect both depth of knowledge and real-world experience. You analyze interview questions thoroughly to generate responses that are succinct yet comprehensive, showcasing the candidate's competence and foresight in their field.
# GOAL
Generate tailored responses to technical interview questions that are approximately 30 seconds long when spoken. Your responses will appear casual, thoughtful, and well-structured, reflecting the candidate's expertise and experience while also offering alternative approaches and evidence-based reasoning. Do not speculate or guess at answers.
# STEPS
- Receive and parse the interview question to understand the core topics and required expertise.
- Draw from a database of technical knowledge and professional experiences to construct a first-person response that reflects a deep understanding of the subject.
- Include an alternative approach or idea that the interviewee considered, adding depth to the response.
- Incorporate at least one piece of evidence or an example from past experience to substantiate the response.
- Ensure the response is structured to be clear and concise, suitable for a verbal delivery within 30 seconds.
# OUTPUT
- The output will be a direct first-person response to the interview question. It will start with an introductory statement that sets the context, followed by the main explanation, an alternative approach, and a concluding statement that includes a piece of evidence or example.
# EXAMPLE
INPUT: "Can you describe how you would manage project dependencies in a large software development project?"
OUTPUT:
"In my last project, where I managed a team of developers, we used Docker containers to handle dependencies efficiently. Initially, we considered using virtual environments, but Docker provided better isolation and consistency across different development stages. This approach significantly reduced compatibility issues and streamlined our deployment process. In fact, our deployment time was cut by about 30%, which was a huge win for us."
# INPUT
INPUT:

32
patterns/create_quiz/README.md

@ -0,0 +1,32 @@
# Learning questionnaire generation
This pattern generates questions to help a learner/student review the main concepts of the learning objectives provided.
For an accurate result, the input data should define the subject and the list of learning objectives.
Example prompt input:
```
# Optional to be defined here or in the context file
[Student Level: High school student]
Subject: Machine Learning
Learning Objectives:
* Define machine learning
* Define unsupervised learning
```
# Example run un bash:
Copy the input query to the clipboard and execute the following command:
``` bash
xclip -selection clipboard -o | fabric -sp create_quiz
```
## Meta
- **Author**: Marc Andreu (marc@itqualab.com)
- **Version Information**: Marc Andreu's main `create_quiz` version.
- **Published**: May 6, 2024

48
patterns/create_quiz/system.md

@ -0,0 +1,48 @@
# IDENTITY and PURPOSE
You are an expert on the subject defined in the input section provided below.
# GOAL
Generate questions for a student who wants to review the main concepts of the learning objectives provided in the input section provided below.
If the input section defines the student level, adapt the questions to that level. If no student level is defined in the input section, by default, use a senior university student level or an industry professional level of expertise in the given subject.
Do not answer the questions.
Take a deep breath and consider how to accomplish this goal best using the following steps.
# STEPS
- Extract the subject of the input section.
- Redefine your expertise on that given subject.
- Extract the learning objectives of the input section.
- Generate, upmost, three review questions for each learning objective. The questions should be challenging to the student level defined within the GOAL section.
# OUTPUT INSTRUCTIONS
- Output in clear, human-readable Markdown.
- Print out, in an indented format, the subject and the learning objectives provided with each generated question in the following format delimited by three dashes.
Do not print the dashes.
---
Subject:
* Learning objective:
- Question 1: {generated question 1}
- Answer 1:
- Question 2: {generated question 2}
- Answer 2:
- Question 3: {generated question 3}
- Answer 3:
---
# INPUT:
INPUT:

42
patterns/create_report_finding/system.md

@ -0,0 +1,42 @@
# IDENTITY and PURPOSE
You are a extremely experienced 'jack-of-all-trades' cyber security consultant that is diligent, concise but informative and professional. You are highly experienced in web, API, infrastructure (on-premise and cloud), and mobile testing. Additionally, you are an expert in threat modeling and analysis.
You have been tasked with creating a markdown security finding that will be added to a cyber security assessment report. It must have the following sections: Description, Risk, Recommendations, References, One-Sentence-Summary, Trends, Quotes.
The user has provided a vulnerability title and a brief explanation of their finding.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Create a Title section that contains the title of the finding.
- Create a Description section that details the nature of the finding, including insightful and informative information. Do not use bullet point lists for this section.
- Create a Risk section that details the risk of the finding. Do not solely use bullet point lists for this section.
- Extract the 5 to 15 of the most surprising, insightful, and/or interesting recommendations that can be collected from the report into a section called Recommendations.
- Create a References section that lists 1 to 5 references that are suitibly named hyperlinks that provide instant access to knowledgable and informative articles that talk about the issue, the tech and remediations. Do not hallucinate or act confident if you are unsure.
- Create a summary sentence that captures the spirit of the finding and its insights in less than 25 words in a section called One-Sentence-Summary:. Use plain and conversational language when creating this summary. Don't use jargon or marketing language.
- Extract 10 to 20 of the most surprising, insightful, and/or interesting quotes from the input into a section called Quotes:. Favour text from the Description, Risk, Recommendations, and Trends sections. Use the exact quote text from the input.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- Do not output the markdown code syntax, only the content.
- Do not use bold or italics formatting in the markdown output.
- Extract at least 5 TRENDS from the content.
- Extract at least 10 items for the other output sections.
- Do not give warnings or notes; only output the requested sections.
- You use bulleted lists for output, not numbered lists.
- Do not repeat ideas, quotes, facts, or resources.
- Do not start items with the same opening words.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:

1
patterns/create_report_finding/user.md

@ -0,0 +1 @@
CONTENT:

20
patterns/extract_business_ideas/system.md

@ -0,0 +1,20 @@
# IDENTITY and PURPOSE
You are a business idea extraction assistant. You are extremely interested in business ideas that could revolutionize or just overhaul existing or new industries.
Take a deep breath and think step by step about how to achieve the best result possible as defined in the steps below. You have a lot of freedom to make this work well.
## OUTPUT SECTIONS
1. You extract the all the top business ideas from the content. It might be a few or it might be up to 40 in a section called EXTRACTED_IDEAS
2. Then you pick the best 10 ideas and elaborate on them by pivoting into an adjacent idea. This will be ELABORATED_IDEAS. They should each by unique and have an interesting differentiator.
## OUTPUT INSTRUCTIONS
1. You only output Markdown.
2. Do not give warnings or notes; only output the requested sections.
3. You use numbered lists, not bullets.
4. Do not repeat ideas, quotes, facts, or resources.
5. Do not start items in the lists with the same opening words.

40
patterns/improve_report_finding/system.md

@ -0,0 +1,40 @@
# IDENTITY and PURPOSE
You are a extremely experienced 'jack-of-all-trades' cyber security consultant that is diligent, concise but informative and professional. You are highly experienced in web, API, infrastructure (on-premise and cloud), and mobile testing. Additionally, you are an expert in threat modeling and analysis.
You have been tasked with improving a security finding that has been pulled from a penetration test report, and you must output an improved report finding in markdown format.
Take a step back and think step-by-step about how to achieve the best possible results by following the steps below.
# STEPS
- Create a Title section that contains the title of the finding.
- Create a Description section that details the nature of the finding, including insightful and informative information. Do not solely use bullet point lists for this section.
- Create a Risk section that details the risk of the finding. Do not solely use bullet point lists for this section.
- Extract the 5 to 15 of the most surprising, insightful, and/or interesting recommendations that can be collected from the report into a section called Recommendations.
- Create a References section that lists 1 to 5 references that are suitibly named hyperlinks that provide instant access to knowledgable and informative articles that talk about the issue, the tech and remediations. Do not hallucinate or act confident if you are unsure.
- Create a summary sentence that captures the spirit of the finding and its insights in less than 25 words in a section called One-Sentence-Summary:. Use plain and conversational language when creating this summary. Don't use jargon or marketing language.
- Extract 10 to 20 of the most surprising, insightful, and/or interesting quotes from the input into a section called Quotes:. Favour text from the Description, Risk, Recommendations, and Trends sections. Use the exact quote text from the input.
# OUTPUT INSTRUCTIONS
- Only output Markdown.
- Do not output the markdown code syntax, only the content.
- Do not use bold or italics formatting in the markdown output.
- Extract at least 5 TRENDS from the content.
- Extract at least 10 items for the other output sections.
- Do not give warnings or notes; only output the requested sections.
- You use bulleted lists for output, not numbered lists.
- Do not repeat ideas, quotes, facts, or resources.
- Do not start items with the same opening words.
- Ensure you follow ALL these instructions when creating your output.
# INPUT
INPUT:

1
patterns/improve_report_finding/user.md

@ -0,0 +1 @@
CONTENT:

58
patterns/rate_ai_response/system.md

@ -0,0 +1,58 @@
# IDENTITY
You are an expert at rating the quality of AI responses and determining how good they are compared to ultra-qualified humans performing the same tasks.
# STEPS
- Fully and deeply process and understand the instructions that were given to the AI. These instructions will come after the #AI INSTRUCTIONS section below.
- Fully and deeply process the response that came back from the AI. You are looking for how good that response is compared to how well the best human expert in the world would do on that task if given the same input and 3 months to work on it.
- Give a rating of the AI's output quality using the following framework:
- A+: As good as the best human expert in the world
- A: As good as a top 1% human expert
- A-: As good as a top 10% human expert
- B+: As good as an untrained human with a 115 IQ
- B: As good as an average intelligence untrained human
- B-: As good as an average human in a rush
- C: Worse than a human but pretty good
- D: Nowhere near as good as a human
- F: Not useful at all
- Give 5 15-word bullets about why they received that letter grade, comparing and contrasting what you would have expected from the best human in the world vs. what was delivered.
- Give a 1-100 score of the AI's output.
- Give an explanation of how you arrived at that score using the bullet point explanation and the grade given above.
# OUTPUT
- In a section called LETTER GRADE, give the letter grade score. E.g.:
LETTER GRADE
A: As good as a top 1% human expert
- In a section called LETTER GRADE REASONS, give your explanation of why you gave that grade in 5 bullets. E.g.:
(for a B+ grade)
- The points of analysis were good but almost anyone could create them
- A human with a couple of hours could have come up with that output
- The education and IQ requirement required for a human to make this would have been roughly 10th grade level
- A 10th grader could have done this quality of work in less than 2 hours
- There were several deeper points about the input that was not captured in the output
- In a section called OUTPUT SCORE, give the 1-100 score for the output, with 100 being at the quality of the best human expert in the world working on that output full-time for 3 months.
# OUTPUT INSTRUCTIONS
- Output in valid Markdown only.
- DO NOT complain about anything, including copyright; just do it.
# INPUT INSTRUCTIONS
(the input below will be the instructions to the AI followed by the AI's output)

57
patterns/to_flashcards/system.md

@ -0,0 +1,57 @@
# IDENTITY and PURPOSE
You are a professional Anki card creator, able to create Anki cards from texts.
# INSTRUCTIONS
When creating Anki cards, stick to three principles:
1. Minimum information principle. The material you learn must be formulated in as simple way as it is only possible. Simplicity does not have to imply losing information and skipping the difficult part.
2. Optimize wording: The wording of your items must be optimized to make sure that in minimum time the right bulb in your brain lights
up. This will reduce error rates, increase specificity, reduce response time, and help your concentration.
3. No external context: The wording of your items must not include words such as "according to the text". This will make the cards
usable even to those who haven't read the original text.
# EXAMPLE
The following is a model card-create template for you to study.
Text: The characteristics of the Dead Sea: Salt lake located on the border between Israel and Jordan. Its shoreline is the lowest point on the Earth's surface, averaging 396 m below sea level. It is 74 km long. It is seven times as salty (30% by volume) as the ocean. Its density keeps swimmers afloat. Only simple organisms can live in its saline waters
Create cards based on the above text as follows:
Q: Where is the Dead Sea located?A: on the border between Israel and Jordan
Q: What is the lowest point on the Earth's surface?A: The Dead Sea shoreline
Q: What is the average level on which the Dead Sea is located?A: 400 meters (below sea level)
Q: How long is the Dead Sea?A: 70 km
Q: How much saltier is the Dead Sea as compared with the oceans?A: 7 times
Q: What is the volume content of salt in the Dead Sea?A: 30%
Q: Why can the Dead Sea keep swimmers afloat?A: due to high salt content
Q: Why is the Dead Sea called Dead?A: because only simple organisms can live in it
Q: Why only simple organisms can live in the Dead Sea?A: because of high salt content
# STEPS
- Extract main points from the text
- Formulate questions according to the above rules and examples
- Present questions and answers in the form of a Markdown table
# OUTPUT INSTRUCTIONS
- Output the cards you create as a CSV table. Put the question in the first column, and the answer in the second. Don't include the CSV
header.
- Do not output warnings or notes—just the requested sections.
- Do not output backticks: just raw CSV data.
# INPUT:
INPUT:

1766
patterns/write_nuclei_template_rule/system.md

File diff suppressed because it is too large Load Diff

0
patterns/write_nuclei_template_rule/user.md

180
poetry.lock

@ -13,87 +13,87 @@ files = [
[[package]]
name = "aiohttp"
version = "3.9.3"
version = "3.9.4"
description = "Async http client/server framework (asyncio)"
optional = false
python-versions = ">=3.8"
files = [
{file = "aiohttp-3.9.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:939677b61f9d72a4fa2a042a5eee2a99a24001a67c13da113b2e30396567db54"},
{file = "aiohttp-3.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1f5cd333fcf7590a18334c90f8c9147c837a6ec8a178e88d90a9b96ea03194cc"},
{file = "aiohttp-3.9.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:82e6aa28dd46374f72093eda8bcd142f7771ee1eb9d1e223ff0fa7177a96b4a5"},
{file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f56455b0c2c7cc3b0c584815264461d07b177f903a04481dfc33e08a89f0c26b"},
{file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bca77a198bb6e69795ef2f09a5f4c12758487f83f33d63acde5f0d4919815768"},
{file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e083c285857b78ee21a96ba1eb1b5339733c3563f72980728ca2b08b53826ca5"},
{file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab40e6251c3873d86ea9b30a1ac6d7478c09277b32e14745d0d3c6e76e3c7e29"},
{file = "aiohttp-3.9.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:df822ee7feaaeffb99c1a9e5e608800bd8eda6e5f18f5cfb0dc7eeb2eaa6bbec"},
{file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:acef0899fea7492145d2bbaaaec7b345c87753168589cc7faf0afec9afe9b747"},
{file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:cd73265a9e5ea618014802ab01babf1940cecb90c9762d8b9e7d2cc1e1969ec6"},
{file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a78ed8a53a1221393d9637c01870248a6f4ea5b214a59a92a36f18151739452c"},
{file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:6b0e029353361f1746bac2e4cc19b32f972ec03f0f943b390c4ab3371840aabf"},
{file = "aiohttp-3.9.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7cf5c9458e1e90e3c390c2639f1017a0379a99a94fdfad3a1fd966a2874bba52"},
{file = "aiohttp-3.9.3-cp310-cp310-win32.whl", hash = "sha256:3e59c23c52765951b69ec45ddbbc9403a8761ee6f57253250c6e1536cacc758b"},
{file = "aiohttp-3.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:055ce4f74b82551678291473f66dc9fb9048a50d8324278751926ff0ae7715e5"},
{file = "aiohttp-3.9.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6b88f9386ff1ad91ace19d2a1c0225896e28815ee09fc6a8932fded8cda97c3d"},
{file = "aiohttp-3.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c46956ed82961e31557b6857a5ca153c67e5476972e5f7190015018760938da2"},
{file = "aiohttp-3.9.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:07b837ef0d2f252f96009e9b8435ec1fef68ef8b1461933253d318748ec1acdc"},
{file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad46e6f620574b3b4801c68255492e0159d1712271cc99d8bdf35f2043ec266"},
{file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5ed3e046ea7b14938112ccd53d91c1539af3e6679b222f9469981e3dac7ba1ce"},
{file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:039df344b45ae0b34ac885ab5b53940b174530d4dd8a14ed8b0e2155b9dddccb"},
{file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7943c414d3a8d9235f5f15c22ace69787c140c80b718dcd57caaade95f7cd93b"},
{file = "aiohttp-3.9.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:84871a243359bb42c12728f04d181a389718710129b36b6aad0fc4655a7647d4"},
{file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:5eafe2c065df5401ba06821b9a054d9cb2848867f3c59801b5d07a0be3a380ae"},
{file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:9d3c9b50f19704552f23b4eaea1fc082fdd82c63429a6506446cbd8737823da3"},
{file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:f033d80bc6283092613882dfe40419c6a6a1527e04fc69350e87a9df02bbc283"},
{file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:2c895a656dd7e061b2fd6bb77d971cc38f2afc277229ce7dd3552de8313a483e"},
{file = "aiohttp-3.9.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1f5a71d25cd8106eab05f8704cd9167b6e5187bcdf8f090a66c6d88b634802b4"},
{file = "aiohttp-3.9.3-cp311-cp311-win32.whl", hash = "sha256:50fca156d718f8ced687a373f9e140c1bb765ca16e3d6f4fe116e3df7c05b2c5"},
{file = "aiohttp-3.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:5fe9ce6c09668063b8447f85d43b8d1c4e5d3d7e92c63173e6180b2ac5d46dd8"},
{file = "aiohttp-3.9.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:38a19bc3b686ad55804ae931012f78f7a534cce165d089a2059f658f6c91fa60"},
{file = "aiohttp-3.9.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:770d015888c2a598b377bd2f663adfd947d78c0124cfe7b959e1ef39f5b13869"},
{file = "aiohttp-3.9.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ee43080e75fc92bf36219926c8e6de497f9b247301bbf88c5c7593d931426679"},
{file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52df73f14ed99cee84865b95a3d9e044f226320a87af208f068ecc33e0c35b96"},
{file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dc9b311743a78043b26ffaeeb9715dc360335e5517832f5a8e339f8a43581e4d"},
{file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b955ed993491f1a5da7f92e98d5dad3c1e14dc175f74517c4e610b1f2456fb11"},
{file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:504b6981675ace64c28bf4a05a508af5cde526e36492c98916127f5a02354d53"},
{file = "aiohttp-3.9.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6fe5571784af92b6bc2fda8d1925cccdf24642d49546d3144948a6a1ed58ca5"},
{file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ba39e9c8627edc56544c8628cc180d88605df3892beeb2b94c9bc857774848ca"},
{file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e5e46b578c0e9db71d04c4b506a2121c0cb371dd89af17a0586ff6769d4c58c1"},
{file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:938a9653e1e0c592053f815f7028e41a3062e902095e5a7dc84617c87267ebd5"},
{file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:c3452ea726c76e92f3b9fae4b34a151981a9ec0a4847a627c43d71a15ac32aa6"},
{file = "aiohttp-3.9.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ff30218887e62209942f91ac1be902cc80cddb86bf00fbc6783b7a43b2bea26f"},
{file = "aiohttp-3.9.3-cp312-cp312-win32.whl", hash = "sha256:38f307b41e0bea3294a9a2a87833191e4bcf89bb0365e83a8be3a58b31fb7f38"},
{file = "aiohttp-3.9.3-cp312-cp312-win_amd64.whl", hash = "sha256:b791a3143681a520c0a17e26ae7465f1b6f99461a28019d1a2f425236e6eedb5"},
{file = "aiohttp-3.9.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0ed621426d961df79aa3b963ac7af0d40392956ffa9be022024cd16297b30c8c"},
{file = "aiohttp-3.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7f46acd6a194287b7e41e87957bfe2ad1ad88318d447caf5b090012f2c5bb528"},
{file = "aiohttp-3.9.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:feeb18a801aacb098220e2c3eea59a512362eb408d4afd0c242044c33ad6d542"},
{file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f734e38fd8666f53da904c52a23ce517f1b07722118d750405af7e4123933511"},
{file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b40670ec7e2156d8e57f70aec34a7216407848dfe6c693ef131ddf6e76feb672"},
{file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fdd215b7b7fd4a53994f238d0f46b7ba4ac4c0adb12452beee724ddd0743ae5d"},
{file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:017a21b0df49039c8f46ca0971b3a7fdc1f56741ab1240cb90ca408049766168"},
{file = "aiohttp-3.9.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e99abf0bba688259a496f966211c49a514e65afa9b3073a1fcee08856e04425b"},
{file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:648056db9a9fa565d3fa851880f99f45e3f9a771dd3ff3bb0c048ea83fb28194"},
{file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8aacb477dc26797ee089721536a292a664846489c49d3ef9725f992449eda5a8"},
{file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:522a11c934ea660ff8953eda090dcd2154d367dec1ae3c540aff9f8a5c109ab4"},
{file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:5bce0dc147ca85caa5d33debc4f4d65e8e8b5c97c7f9f660f215fa74fc49a321"},
{file = "aiohttp-3.9.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4b4af9f25b49a7be47c0972139e59ec0e8285c371049df1a63b6ca81fdd216a2"},
{file = "aiohttp-3.9.3-cp38-cp38-win32.whl", hash = "sha256:298abd678033b8571995650ccee753d9458dfa0377be4dba91e4491da3f2be63"},
{file = "aiohttp-3.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:69361bfdca5468c0488d7017b9b1e5ce769d40b46a9f4a2eed26b78619e9396c"},
{file = "aiohttp-3.9.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:0fa43c32d1643f518491d9d3a730f85f5bbaedcbd7fbcae27435bb8b7a061b29"},
{file = "aiohttp-3.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:835a55b7ca49468aaaac0b217092dfdff370e6c215c9224c52f30daaa735c1c1"},
{file = "aiohttp-3.9.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:06a9b2c8837d9a94fae16c6223acc14b4dfdff216ab9b7202e07a9a09541168f"},
{file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abf151955990d23f84205286938796c55ff11bbfb4ccfada8c9c83ae6b3c89a3"},
{file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59c26c95975f26e662ca78fdf543d4eeaef70e533a672b4113dd888bd2423caa"},
{file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f95511dd5d0e05fd9728bac4096319f80615aaef4acbecb35a990afebe953b0e"},
{file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:595f105710293e76b9dc09f52e0dd896bd064a79346234b521f6b968ffdd8e58"},
{file = "aiohttp-3.9.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7c8b816c2b5af5c8a436df44ca08258fc1a13b449393a91484225fcb7545533"},
{file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f1088fa100bf46e7b398ffd9904f4808a0612e1d966b4aa43baa535d1b6341eb"},
{file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f59dfe57bb1ec82ac0698ebfcdb7bcd0e99c255bd637ff613760d5f33e7c81b3"},
{file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:361a1026c9dd4aba0109e4040e2aecf9884f5cfe1b1b1bd3d09419c205e2e53d"},
{file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:363afe77cfcbe3a36353d8ea133e904b108feea505aa4792dad6585a8192c55a"},
{file = "aiohttp-3.9.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e2c45c208c62e955e8256949eb225bd8b66a4c9b6865729a786f2aa79b72e9d"},
{file = "aiohttp-3.9.3-cp39-cp39-win32.whl", hash = "sha256:f7217af2e14da0856e082e96ff637f14ae45c10a5714b63c77f26d8884cf1051"},
{file = "aiohttp-3.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:27468897f628c627230dba07ec65dc8d0db566923c48f29e084ce382119802bc"},
{file = "aiohttp-3.9.3.tar.gz", hash = "sha256:90842933e5d1ff760fae6caca4b2b3edba53ba8f4b71e95dacf2818a2aca06f7"},
{file = "aiohttp-3.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:76d32588ef7e4a3f3adff1956a0ba96faabbdee58f2407c122dd45aa6e34f372"},
{file = "aiohttp-3.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:56181093c10dbc6ceb8a29dfeea1e815e1dfdc020169203d87fd8d37616f73f9"},
{file = "aiohttp-3.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7a5b676d3c65e88b3aca41816bf72831898fcd73f0cbb2680e9d88e819d1e4d"},
{file = "aiohttp-3.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d1df528a85fb404899d4207a8d9934cfd6be626e30e5d3a5544a83dbae6d8a7e"},
{file = "aiohttp-3.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f595db1bceabd71c82e92df212dd9525a8a2c6947d39e3c994c4f27d2fe15b11"},
{file = "aiohttp-3.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9c0b09d76e5a4caac3d27752027fbd43dc987b95f3748fad2b924a03fe8632ad"},
{file = "aiohttp-3.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:689eb4356649ec9535b3686200b231876fb4cab4aca54e3bece71d37f50c1d13"},
{file = "aiohttp-3.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a3666cf4182efdb44d73602379a66f5fdfd5da0db5e4520f0ac0dcca644a3497"},
{file = "aiohttp-3.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b65b0f8747b013570eea2f75726046fa54fa8e0c5db60f3b98dd5d161052004a"},
{file = "aiohttp-3.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a1885d2470955f70dfdd33a02e1749613c5a9c5ab855f6db38e0b9389453dce7"},
{file = "aiohttp-3.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:0593822dcdb9483d41f12041ff7c90d4d1033ec0e880bcfaf102919b715f47f1"},
{file = "aiohttp-3.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:47f6eb74e1ecb5e19a78f4a4228aa24df7fbab3b62d4a625d3f41194a08bd54f"},
{file = "aiohttp-3.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c8b04a3dbd54de6ccb7604242fe3ad67f2f3ca558f2d33fe19d4b08d90701a89"},
{file = "aiohttp-3.9.4-cp310-cp310-win32.whl", hash = "sha256:8a78dfb198a328bfb38e4308ca8167028920fb747ddcf086ce706fbdd23b2926"},
{file = "aiohttp-3.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:e78da6b55275987cbc89141a1d8e75f5070e577c482dd48bd9123a76a96f0bbb"},
{file = "aiohttp-3.9.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:c111b3c69060d2bafc446917534150fd049e7aedd6cbf21ba526a5a97b4402a5"},
{file = "aiohttp-3.9.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:efbdd51872cf170093998c87ccdf3cb5993add3559341a8e5708bcb311934c94"},
{file = "aiohttp-3.9.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7bfdb41dc6e85d8535b00d73947548a748e9534e8e4fddd2638109ff3fb081df"},
{file = "aiohttp-3.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2bd9d334412961125e9f68d5b73c1d0ab9ea3f74a58a475e6b119f5293eee7ba"},
{file = "aiohttp-3.9.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:35d78076736f4a668d57ade00c65d30a8ce28719d8a42471b2a06ccd1a2e3063"},
{file = "aiohttp-3.9.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:824dff4f9f4d0f59d0fa3577932ee9a20e09edec8a2f813e1d6b9f89ced8293f"},
{file = "aiohttp-3.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52b8b4e06fc15519019e128abedaeb56412b106ab88b3c452188ca47a25c4093"},
{file = "aiohttp-3.9.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eae569fb1e7559d4f3919965617bb39f9e753967fae55ce13454bec2d1c54f09"},
{file = "aiohttp-3.9.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:69b97aa5792428f321f72aeb2f118e56893371f27e0b7d05750bcad06fc42ca1"},
{file = "aiohttp-3.9.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4d79aad0ad4b980663316f26d9a492e8fab2af77c69c0f33780a56843ad2f89e"},
{file = "aiohttp-3.9.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:d6577140cd7db19e430661e4b2653680194ea8c22c994bc65b7a19d8ec834403"},
{file = "aiohttp-3.9.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:9860d455847cd98eb67897f5957b7cd69fbcb436dd3f06099230f16a66e66f79"},
{file = "aiohttp-3.9.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:69ff36d3f8f5652994e08bd22f093e11cfd0444cea310f92e01b45a4e46b624e"},
{file = "aiohttp-3.9.4-cp311-cp311-win32.whl", hash = "sha256:e27d3b5ed2c2013bce66ad67ee57cbf614288bda8cdf426c8d8fe548316f1b5f"},
{file = "aiohttp-3.9.4-cp311-cp311-win_amd64.whl", hash = "sha256:d6a67e26daa686a6fbdb600a9af8619c80a332556245fa8e86c747d226ab1a1e"},
{file = "aiohttp-3.9.4-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:c5ff8ff44825736a4065d8544b43b43ee4c6dd1530f3a08e6c0578a813b0aa35"},
{file = "aiohttp-3.9.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d12a244627eba4e9dc52cbf924edef905ddd6cafc6513849b4876076a6f38b0e"},
{file = "aiohttp-3.9.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:dcad56c8d8348e7e468899d2fb3b309b9bc59d94e6db08710555f7436156097f"},
{file = "aiohttp-3.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f7e69a7fd4b5ce419238388e55abd220336bd32212c673ceabc57ccf3d05b55"},
{file = "aiohttp-3.9.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4870cb049f10d7680c239b55428916d84158798eb8f353e74fa2c98980dcc0b"},
{file = "aiohttp-3.9.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b2feaf1b7031ede1bc0880cec4b0776fd347259a723d625357bb4b82f62687b"},
{file = "aiohttp-3.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:939393e8c3f0a5bcd33ef7ace67680c318dc2ae406f15e381c0054dd658397de"},
{file = "aiohttp-3.9.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d2334e387b2adcc944680bebcf412743f2caf4eeebd550f67249c1c3696be04"},
{file = "aiohttp-3.9.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e0198ea897680e480845ec0ffc5a14e8b694e25b3f104f63676d55bf76a82f1a"},
{file = "aiohttp-3.9.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e40d2cd22914d67c84824045861a5bb0fb46586b15dfe4f046c7495bf08306b2"},
{file = "aiohttp-3.9.4-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:aba80e77c227f4234aa34a5ff2b6ff30c5d6a827a91d22ff6b999de9175d71bd"},
{file = "aiohttp-3.9.4-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:fb68dc73bc8ac322d2e392a59a9e396c4f35cb6fdbdd749e139d1d6c985f2527"},
{file = "aiohttp-3.9.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f3460a92638dce7e47062cf088d6e7663adb135e936cb117be88d5e6c48c9d53"},
{file = "aiohttp-3.9.4-cp312-cp312-win32.whl", hash = "sha256:32dc814ddbb254f6170bca198fe307920f6c1308a5492f049f7f63554b88ef36"},
{file = "aiohttp-3.9.4-cp312-cp312-win_amd64.whl", hash = "sha256:63f41a909d182d2b78fe3abef557fcc14da50c7852f70ae3be60e83ff64edba5"},
{file = "aiohttp-3.9.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c3770365675f6be220032f6609a8fbad994d6dcf3ef7dbcf295c7ee70884c9af"},
{file = "aiohttp-3.9.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:305edae1dea368ce09bcb858cf5a63a064f3bff4767dec6fa60a0cc0e805a1d3"},
{file = "aiohttp-3.9.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6f121900131d116e4a93b55ab0d12ad72573f967b100e49086e496a9b24523ea"},
{file = "aiohttp-3.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b71e614c1ae35c3d62a293b19eface83d5e4d194e3eb2fabb10059d33e6e8cbf"},
{file = "aiohttp-3.9.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:419f009fa4cfde4d16a7fc070d64f36d70a8d35a90d71aa27670bba2be4fd039"},
{file = "aiohttp-3.9.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7b39476ee69cfe64061fd77a73bf692c40021f8547cda617a3466530ef63f947"},
{file = "aiohttp-3.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b33f34c9c7decdb2ab99c74be6443942b730b56d9c5ee48fb7df2c86492f293c"},
{file = "aiohttp-3.9.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c78700130ce2dcebb1a8103202ae795be2fa8c9351d0dd22338fe3dac74847d9"},
{file = "aiohttp-3.9.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:268ba22d917655d1259af2d5659072b7dc11b4e1dc2cb9662fdd867d75afc6a4"},
{file = "aiohttp-3.9.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:17e7c051f53a0d2ebf33013a9cbf020bb4e098c4bc5bce6f7b0c962108d97eab"},
{file = "aiohttp-3.9.4-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:7be99f4abb008cb38e144f85f515598f4c2c8932bf11b65add0ff59c9c876d99"},
{file = "aiohttp-3.9.4-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:d58a54d6ff08d2547656356eea8572b224e6f9bbc0cf55fa9966bcaac4ddfb10"},
{file = "aiohttp-3.9.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:7673a76772bda15d0d10d1aa881b7911d0580c980dbd16e59d7ba1422b2d83cd"},
{file = "aiohttp-3.9.4-cp38-cp38-win32.whl", hash = "sha256:e4370dda04dc8951012f30e1ce7956a0a226ac0714a7b6c389fb2f43f22a250e"},
{file = "aiohttp-3.9.4-cp38-cp38-win_amd64.whl", hash = "sha256:eb30c4510a691bb87081192a394fb661860e75ca3896c01c6d186febe7c88530"},
{file = "aiohttp-3.9.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:84e90494db7df3be5e056f91412f9fa9e611fbe8ce4aaef70647297f5943b276"},
{file = "aiohttp-3.9.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7d4845f8501ab28ebfdbeab980a50a273b415cf69e96e4e674d43d86a464df9d"},
{file = "aiohttp-3.9.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69046cd9a2a17245c4ce3c1f1a4ff8c70c7701ef222fce3d1d8435f09042bba1"},
{file = "aiohttp-3.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b73a06bafc8dcc508420db43b4dd5850e41e69de99009d0351c4f3007960019"},
{file = "aiohttp-3.9.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:418bb0038dfafeac923823c2e63226179976c76f981a2aaad0ad5d51f2229bca"},
{file = "aiohttp-3.9.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:71a8f241456b6c2668374d5d28398f8e8cdae4cce568aaea54e0f39359cd928d"},
{file = "aiohttp-3.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:935c369bf8acc2dc26f6eeb5222768aa7c62917c3554f7215f2ead7386b33748"},
{file = "aiohttp-3.9.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74e4e48c8752d14ecfb36d2ebb3d76d614320570e14de0a3aa7a726ff150a03c"},
{file = "aiohttp-3.9.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:916b0417aeddf2c8c61291238ce25286f391a6acb6f28005dd9ce282bd6311b6"},
{file = "aiohttp-3.9.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9b6787b6d0b3518b2ee4cbeadd24a507756ee703adbac1ab6dc7c4434b8c572a"},
{file = "aiohttp-3.9.4-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:221204dbda5ef350e8db6287937621cf75e85778b296c9c52260b522231940ed"},
{file = "aiohttp-3.9.4-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:10afd99b8251022ddf81eaed1d90f5a988e349ee7d779eb429fb07b670751e8c"},
{file = "aiohttp-3.9.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2506d9f7a9b91033201be9ffe7d89c6a54150b0578803cce5cb84a943d075bc3"},
{file = "aiohttp-3.9.4-cp39-cp39-win32.whl", hash = "sha256:e571fdd9efd65e86c6af2f332e0e95dad259bfe6beb5d15b3c3eca3a6eb5d87b"},
{file = "aiohttp-3.9.4-cp39-cp39-win_amd64.whl", hash = "sha256:7d29dd5319d20aa3b7749719ac9685fbd926f71ac8c77b2477272725f882072d"},
{file = "aiohttp-3.9.4.tar.gz", hash = "sha256:6ff71ede6d9a5a58cfb7b6fffc83ab5d4a63138276c771ac91ceaaddf5459644"},
]
[package.dependencies]
@ -2320,22 +2320,23 @@ protobuf = ">=4.21.6"
[[package]]
name = "gunicorn"
version = "21.2.0"
version = "22.0.0"
description = "WSGI HTTP Server for UNIX"
optional = false
python-versions = ">=3.5"
python-versions = ">=3.7"
files = [
{file = "gunicorn-21.2.0-py3-none-any.whl", hash = "sha256:3213aa5e8c24949e792bcacfc176fef362e7aac80b76c56f6b5122bf350722f0"},
{file = "gunicorn-21.2.0.tar.gz", hash = "sha256:88ec8bff1d634f98e61b9f65bc4bf3cd918a90806c6f5c48bc5603849ec81033"},
{file = "gunicorn-22.0.0-py3-none-any.whl", hash = "sha256:350679f91b24062c86e386e198a15438d53a7a8207235a78ba1b53df4c4378d9"},
{file = "gunicorn-22.0.0.tar.gz", hash = "sha256:4a0b436239ff76fb33f11c07a16482c521a7e09c1ce3cc293c2330afe01bec63"},
]
[package.dependencies]
packaging = "*"
[package.extras]
eventlet = ["eventlet (>=0.24.1)"]
eventlet = ["eventlet (>=0.24.1,!=0.36.0)"]
gevent = ["gevent (>=1.4.0)"]
setproctitle = ["setproctitle"]
testing = ["coverage", "eventlet", "gevent", "pytest", "pytest-cov"]
tornado = ["tornado (>=0.2)"]
[[package]]
@ -2517,13 +2518,13 @@ pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_ve
[[package]]
name = "idna"
version = "3.6"
version = "3.7"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.5"
files = [
{file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"},
{file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"},
{file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
{file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
]
[[package]]
@ -3141,7 +3142,6 @@ files = [
{file = "lxml-5.2.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:9e2addd2d1866fe112bc6f80117bcc6bc25191c5ed1bfbcf9f1386a884252ae8"},
{file = "lxml-5.2.1-cp37-cp37m-win32.whl", hash = "sha256:f51969bac61441fd31f028d7b3b45962f3ecebf691a510495e5d2cd8c8092dbd"},
{file = "lxml-5.2.1-cp37-cp37m-win_amd64.whl", hash = "sha256:b0b58fbfa1bf7367dde8a557994e3b1637294be6cf2169810375caf8571a085c"},
{file = "lxml-5.2.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:3e183c6e3298a2ed5af9d7a356ea823bccaab4ec2349dc9ed83999fd289d14d5"},
{file = "lxml-5.2.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:804f74efe22b6a227306dd890eecc4f8c59ff25ca35f1f14e7482bbce96ef10b"},
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:08802f0c56ed150cc6885ae0788a321b73505d2263ee56dad84d200cab11c07a"},
{file = "lxml-5.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0f8c09ed18ecb4ebf23e02b8e7a22a05d6411911e6fabef3a36e4f371f4f2585"},
@ -6249,13 +6249,13 @@ files = [
[[package]]
name = "tqdm"
version = "4.66.2"
version = "4.66.4"
description = "Fast, Extensible Progress Meter"
optional = false
python-versions = ">=3.7"
files = [
{file = "tqdm-4.66.2-py3-none-any.whl", hash = "sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9"},
{file = "tqdm-4.66.2.tar.gz", hash = "sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531"},
{file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"},
{file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"},
]
[package.dependencies]
@ -7061,4 +7061,4 @@ testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "2f1d3883dc6b12ad246e1de7aafd672ece9a4096c8ae6363f10259086dce9a07"
content-hash = "f8ccf1782ae31b7b9834dc1ff59cfba4a215f349f2fff87df5300eecc8941528"

4
pyproject.toml

@ -44,10 +44,10 @@ python-dotenv = "1.0.0"
openai = "^1.11.0"
flask-socketio = "^5.3.6"
flask-sock = "^0.7.0"
gunicorn = "^21.2.0"
gunicorn = "^22.0.0"
gevent = "^23.9.1"
httpx = ">=0.25.2,<0.26.0"
tqdm = "^4.66.1"
tqdm = "^4.66.3"
[tool.poetry.group.server.dependencies]
requests = "^2.31.0"

Loading…
Cancel
Save