Browse Source

Add deploy instructions

pull/70/head
Bola Malek 2 years ago
parent
commit
b2379828f8
  1. 34
      README.md

34
README.md

@ -84,3 +84,37 @@ table = LabelTable(load_list('terms.txt'), 'terms', ci)
best_match = table.rank(ci.image_to_features(image), top_count=1)[0]
print(best_match)
```
## Deploying as Cloud Service (using Baseten)
This repo contains a [`truss`]("./truss"), which packages the model for cloud deployment using the [truss open-source library](https://github.com/basetenlabs/truss) by Baseten. Using this truss, you can easily deploy your own scalable cloud service of this model by following these steps.
1. Clone the repo: `git clone https://github.com/pharmapsychotic/clip-interrogator.git`
2. `cd clip-interrogator`
3. Setup virtualenv with baseten and truss deps (make sure to upgrade)
```
python3 -m venv .env
source .env/bin/activate
pip install --upgrade pip
pip install --upgrade baseten truss
```
4. [Grab API key from your Baseten account](https://docs.baseten.co/settings/api-keys)
5. Deploy using this command
```
BASETEN_API_KEY=API_KEY_COPIED_FROM_BASETEN python deploy_baseten.py
```
6. You'll get an email once your model is ready and you can call it using the instructions from the UI.
Below is a sample invocation.
```
import baseten, os
baseten.login(os.environ["BASETEN_API_KEY"])
img_str = ''
model = baseten.deployed_model_id("MODEL_ID_FROM_ACCOUNT")
model.predict({
"image": img_str,
"format": "PNG",
"mode": "fast",
"clip_model_name": "ViT-L-14/openai"
})
```
Loading…
Cancel
Save