Chenxi
2 years ago
3 changed files with 371 additions and 0 deletions
@ -0,0 +1,28 @@
|
||||
build: |
||||
gpu: true |
||||
cuda: "11.3" |
||||
python_version: "3.8" |
||||
system_packages: |
||||
- "libgl1-mesa-glx" |
||||
- "libglib2.0-0" |
||||
python_packages: |
||||
- "ipython==8.4.0" |
||||
- "fairscale==0.4.12" |
||||
- "transformers==4.21.2" |
||||
- "ftfy==6.1.1" |
||||
- "torch==1.11.0 --extra-index-url=https://download.pytorch.org/whl/cu113" |
||||
- "torchvision==0.12.0 --extra-index-url=https://download.pytorch.org/whl/cu113" |
||||
run: |
||||
- pip install -e git+https://github.com/pharmapsychotic/BLIP.git@main#egg=blip |
||||
- pip install -e git+https://github.com/openai/CLIP.git@main#egg=clip |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/RN50.pt" "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/RN101.pt" "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/RN50x4.pt" "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/RN50x16.pt" "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/RN50x64.pt" "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/ViT-B-32.pt" "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/ViT-B-16.pt" "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/ViT-L-14.pt" "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt" |
||||
- mkdir -p /root/.cache/clip && wget --output-document "/root/.cache/clip/ViT-L-14-336px.pt" "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt" |
||||
|
||||
predict: "predict.py:Predictor" |
@ -0,0 +1,341 @@
|
||||
import sys |
||||
|
||||
sys.path.append("src/clip") |
||||
sys.path.append("src/blip") |
||||
|
||||
import os |
||||
import hashlib |
||||
import math |
||||
import numpy as np |
||||
import pickle |
||||
from tqdm import tqdm |
||||
from PIL import Image |
||||
import torch |
||||
from torchvision import transforms |
||||
from torchvision.transforms.functional import InterpolationMode |
||||
import clip |
||||
from models.blip import blip_decoder |
||||
from cog import BasePredictor, Input, Path |
||||
|
||||
|
||||
DATA_PATH = "data" |
||||
chunk_size = 2048 |
||||
flavor_intermediate_count = 2048 |
||||
blip_image_eval_size = 384 |
||||
|
||||
|
||||
class Predictor(BasePredictor): |
||||
def setup(self): |
||||
"""Load the model into memory to make running multiple predictions efficient""" |
||||
|
||||
self.device = "cuda:0" |
||||
|
||||
print("Loading BLIP model...") |
||||
self.blip_model = blip_decoder( |
||||
pretrained="weights/model_large_caption.pth", # downloaded with wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth |
||||
image_size=blip_image_eval_size, |
||||
vit="large", |
||||
med_config="src/blip/configs/med_config.json", |
||||
) |
||||
self.blip_model.eval() |
||||
self.blip_model = self.blip_model.to(self.device) |
||||
|
||||
print("Loading CLIP model...") |
||||
self.clip_models, self.clip_preprocess = {}, {} |
||||
for clip_model_name in [ |
||||
"ViT-B/32", |
||||
"ViT-B/16", |
||||
"ViT-L/14", |
||||
"ViT-L/14@336px", |
||||
"RN101", |
||||
"RN50", |
||||
"RN50x4", |
||||
"RN50x16", |
||||
"RN50x64", |
||||
]: |
||||
( |
||||
self.clip_models[clip_model_name], |
||||
self.clip_preprocess[clip_model_name], |
||||
) = clip.load(clip_model_name, device=self.device) |
||||
self.clip_models[clip_model_name].cuda().eval() |
||||
|
||||
sites = [ |
||||
"Artstation", |
||||
"behance", |
||||
"cg society", |
||||
"cgsociety", |
||||
"deviantart", |
||||
"dribble", |
||||
"flickr", |
||||
"instagram", |
||||
"pexels", |
||||
"pinterest", |
||||
"pixabay", |
||||
"pixiv", |
||||
"polycount", |
||||
"reddit", |
||||
"shutterstock", |
||||
"tumblr", |
||||
"unsplash", |
||||
"zbrush central", |
||||
] |
||||
self.trending_list = [site for site in sites] |
||||
self.trending_list.extend(["trending on " + site for site in sites]) |
||||
self.trending_list.extend(["featured on " + site for site in sites]) |
||||
self.trending_list.extend([site + " contest winner" for site in sites]) |
||||
raw_artists = load_list(f"{DATA_PATH}/artists.txt") |
||||
self.artists = [f"by {a}" for a in raw_artists] |
||||
self.artists.extend([f"inspired by {a}" for a in raw_artists]) |
||||
|
||||
def predict( |
||||
self, |
||||
image: Path = Input(description="Input image"), |
||||
clip_model_name: str = Input( |
||||
default="ViT-L/14", |
||||
choices=[ |
||||
"ViT-B/32", |
||||
"ViT-B/16", |
||||
"ViT-L/14", |
||||
"ViT-L/14@336px", |
||||
"RN101", |
||||
"RN50", |
||||
"RN50x4", |
||||
"RN50x16", |
||||
"RN50x64", |
||||
], |
||||
description="Choose a clip model.", |
||||
), |
||||
) -> str: |
||||
"""Run a single prediction on the model""" |
||||
clip_model = self.clip_models[clip_model_name] |
||||
clip_preprocess = self.clip_preprocess[clip_model_name] |
||||
|
||||
artists = LabelTable(self.artists, "artists", clip_model_name, clip_model) |
||||
flavors = LabelTable( |
||||
load_list(f"{DATA_PATH}/flavors.txt"), |
||||
"flavors", |
||||
clip_model_name, |
||||
clip_model, |
||||
) |
||||
mediums = LabelTable( |
||||
load_list(f"{DATA_PATH}/mediums.txt"), |
||||
"mediums", |
||||
clip_model_name, |
||||
clip_model, |
||||
) |
||||
movements = LabelTable( |
||||
load_list(f"{DATA_PATH}/movements.txt"), |
||||
"movements", |
||||
clip_model_name, |
||||
clip_model, |
||||
) |
||||
trendings = LabelTable( |
||||
self.trending_list, "trendings", clip_model_name, clip_model |
||||
) |
||||
|
||||
image = Image.open(str(image)).convert("RGB") |
||||
|
||||
labels = [flavors, mediums, artists, trendings, movements] |
||||
|
||||
prompt = interrogate( |
||||
image, |
||||
clip_model_name, |
||||
clip_preprocess, |
||||
clip_model, |
||||
self.blip_model, |
||||
*labels, |
||||
) |
||||
|
||||
return prompt |
||||
|
||||
|
||||
class LabelTable: |
||||
def __init__(self, labels, desc, clip_model_name, clip_model): |
||||
self.labels = labels |
||||
self.embeds = [] |
||||
|
||||
hash = hashlib.sha256(",".join(labels).encode()).hexdigest() |
||||
|
||||
os.makedirs("./cache", exist_ok=True) |
||||
cache_filepath = f"./cache/{desc}.pkl" |
||||
if desc is not None and os.path.exists(cache_filepath): |
||||
with open(cache_filepath, "rb") as f: |
||||
data = pickle.load(f) |
||||
if data.get("hash") == hash and data.get("model") == clip_model_name: |
||||
self.labels = data["labels"] |
||||
self.embeds = data["embeds"] |
||||
|
||||
if len(self.labels) != len(self.embeds): |
||||
self.embeds = [] |
||||
chunks = np.array_split(self.labels, max(1, len(self.labels) / chunk_size)) |
||||
for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None): |
||||
text_tokens = clip.tokenize(chunk).cuda() |
||||
with torch.no_grad(): |
||||
text_features = clip_model.encode_text(text_tokens).float() |
||||
text_features /= text_features.norm(dim=-1, keepdim=True) |
||||
text_features = text_features.half().cpu().numpy() |
||||
for i in range(text_features.shape[0]): |
||||
self.embeds.append(text_features[i]) |
||||
|
||||
with open(cache_filepath, "wb") as f: |
||||
pickle.dump( |
||||
{ |
||||
"labels": self.labels, |
||||
"embeds": self.embeds, |
||||
"hash": hash, |
||||
"model": clip_model_name, |
||||
}, |
||||
f, |
||||
) |
||||
|
||||
def _rank(self, image_features, text_embeds, device="cuda", top_count=1): |
||||
top_count = min(top_count, len(text_embeds)) |
||||
similarity = torch.zeros((1, len(text_embeds))).to(device) |
||||
text_embeds = ( |
||||
torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device) |
||||
) |
||||
for i in range(image_features.shape[0]): |
||||
similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax( |
||||
dim=-1 |
||||
) |
||||
_, top_labels = similarity.cpu().topk(top_count, dim=-1) |
||||
return [top_labels[0][i].numpy() for i in range(top_count)] |
||||
|
||||
def rank(self, image_features, top_count=1): |
||||
if len(self.labels) <= chunk_size: |
||||
tops = self._rank(image_features, self.embeds, top_count=top_count) |
||||
return [self.labels[i] for i in tops] |
||||
|
||||
num_chunks = int(math.ceil(len(self.labels) / chunk_size)) |
||||
keep_per_chunk = int(chunk_size / num_chunks) |
||||
|
||||
top_labels, top_embeds = [], [] |
||||
for chunk_idx in tqdm(range(num_chunks)): |
||||
start = chunk_idx * chunk_size |
||||
stop = min(start + chunk_size, len(self.embeds)) |
||||
tops = self._rank( |
||||
image_features, self.embeds[start:stop], top_count=keep_per_chunk |
||||
) |
||||
top_labels.extend([self.labels[start + i] for i in tops]) |
||||
top_embeds.extend([self.embeds[start + i] for i in tops]) |
||||
|
||||
tops = self._rank(image_features, top_embeds, top_count=top_count) |
||||
return [top_labels[i] for i in tops] |
||||
|
||||
|
||||
def generate_caption(pil_image, blip_model, device="cuda"): |
||||
gpu_image = ( |
||||
transforms.Compose( |
||||
[ |
||||
transforms.Resize( |
||||
(blip_image_eval_size, blip_image_eval_size), |
||||
interpolation=InterpolationMode.BICUBIC, |
||||
), |
||||
transforms.ToTensor(), |
||||
transforms.Normalize( |
||||
(0.48145466, 0.4578275, 0.40821073), |
||||
(0.26862954, 0.26130258, 0.27577711), |
||||
), |
||||
] |
||||
)(pil_image) |
||||
.unsqueeze(0) |
||||
.to(device) |
||||
) |
||||
|
||||
with torch.no_grad(): |
||||
caption = blip_model.generate( |
||||
gpu_image, sample=False, num_beams=3, max_length=20, min_length=5 |
||||
) |
||||
return caption[0] |
||||
|
||||
|
||||
def rank_top(image_features, text_array, clip_model, device="cuda"): |
||||
text_tokens = clip.tokenize([text for text in text_array]).cuda() |
||||
with torch.no_grad(): |
||||
text_features = clip_model.encode_text(text_tokens).float() |
||||
text_features /= text_features.norm(dim=-1, keepdim=True) |
||||
|
||||
similarity = torch.zeros((1, len(text_array)), device=device) |
||||
for i in range(image_features.shape[0]): |
||||
similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) |
||||
|
||||
_, top_labels = similarity.cpu().topk(1, dim=-1) |
||||
return text_array[top_labels[0][0].numpy()] |
||||
|
||||
|
||||
def similarity(image_features, text, clip_model): |
||||
text_tokens = clip.tokenize([text]).cuda() |
||||
with torch.no_grad(): |
||||
text_features = clip_model.encode_text(text_tokens).float() |
||||
text_features /= text_features.norm(dim=-1, keepdim=True) |
||||
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T |
||||
return similarity[0][0] |
||||
|
||||
|
||||
def load_list(filename): |
||||
with open(filename, "r", encoding="utf-8", errors="replace") as f: |
||||
items = [line.strip() for line in f.readlines()] |
||||
return items |
||||
|
||||
|
||||
def interrogate(image, clip_model_name, clip_preprocess, clip_model, blip_model, *args): |
||||
flavors, mediums, artists, trendings, movements = args |
||||
caption = generate_caption(image, blip_model) |
||||
|
||||
images = clip_preprocess(image).unsqueeze(0).cuda() |
||||
with torch.no_grad(): |
||||
image_features = clip_model.encode_image(images).float() |
||||
image_features /= image_features.norm(dim=-1, keepdim=True) |
||||
|
||||
flaves = flavors.rank(image_features, flavor_intermediate_count) |
||||
best_medium = mediums.rank(image_features, 1)[0] |
||||
best_artist = artists.rank(image_features, 1)[0] |
||||
best_trending = trendings.rank(image_features, 1)[0] |
||||
best_movement = movements.rank(image_features, 1)[0] |
||||
|
||||
best_prompt = caption |
||||
best_sim = similarity(image_features, best_prompt, clip_model) |
||||
|
||||
def check(addition): |
||||
nonlocal best_prompt, best_sim |
||||
prompt = best_prompt + ", " + addition |
||||
sim = similarity(image_features, prompt, clip_model) |
||||
if sim > best_sim: |
||||
best_sim = sim |
||||
best_prompt = prompt |
||||
return True |
||||
return False |
||||
|
||||
def check_multi_batch(opts): |
||||
nonlocal best_prompt, best_sim |
||||
prompts = [] |
||||
for i in range(2 ** len(opts)): |
||||
prompt = best_prompt |
||||
for bit in range(len(opts)): |
||||
if i & (1 << bit): |
||||
prompt += ", " + opts[bit] |
||||
prompts.append(prompt) |
||||
|
||||
t = LabelTable(prompts, None, clip_model_name, clip_model) |
||||
best_prompt = t.rank(image_features, 1)[0] |
||||
best_sim = similarity(image_features, best_prompt, clip_model) |
||||
|
||||
check_multi_batch([best_medium, best_artist, best_trending, best_movement]) |
||||
|
||||
extended_flavors = set(flaves) |
||||
for _ in tqdm(range(25), desc="Flavor chain"): |
||||
try: |
||||
best = rank_top( |
||||
image_features, |
||||
[f"{best_prompt}, {f}" for f in extended_flavors], |
||||
clip_model, |
||||
) |
||||
flave = best[len(best_prompt) + 2 :] |
||||
if not check(flave): |
||||
break |
||||
extended_flavors.remove(flave) |
||||
except: |
||||
# exceeded max prompt length |
||||
break |
||||
|
||||
return best_prompt |
Loading…
Reference in new issue