Compare commits

...

1 Commits

Author SHA1 Message Date
tin2tin 5b338548c4
Add vae fix & inpaint for images 1 year ago
  1. 184
      __init__.py

184
__init__.py

@ -926,6 +926,10 @@ class SEQEUNCER_PT_generate_ai(Panel): # UI
bl_region_type = "UI" bl_region_type = "UI"
bl_category = "Generative AI" bl_category = "Generative AI"
@classmethod
def poll(cls, context):
return context.area.type == 'SEQUENCE_EDITOR'
def draw(self, context): def draw(self, context):
preferences = context.preferences preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences addon_prefs = preferences.addons[__name__].preferences
@ -938,24 +942,38 @@ class SEQEUNCER_PT_generate_ai(Panel): # UI
input = scene.input_strips input = scene.input_strips
layout = self.layout layout = self.layout
col = layout.column(align=True) col = layout.column(align=False)
col.use_property_split = True
col.use_property_decorate = False
col = col.box()
col = col.column()
col.prop(context.scene, "input_strips", text="Input")
if input == "input_strips":
col.prop(context.scene, "image_power", text="Strip Power")
if type == "image":
col.prop_search(scene, "inpaint_selected_strip", scene.sequence_editor, "sequences", text="Inpaint Mask", icon='SEQ_STRIP_DUPLICATE')
#layout = self.layout
col = col.column(align=True)
col.use_property_split = True col.use_property_split = True
col.use_property_decorate = False col.use_property_decorate = False
col.scale_y = 1.2 col.prop(context.scene, "generate_movie_prompt", text="Prompt", icon="ADD")
col.prop(context.scene, "generate_movie_prompt", text="", icon="ADD")
if type == "audio" and audio_model_card == "bark": if type == "audio" and audio_model_card == "bark":
pass pass
else: else:
col.prop( col.prop(
context.scene, "generate_movie_negative_prompt", text="", icon="REMOVE" context.scene, "generate_movie_negative_prompt", text="Negative Prompt", icon="REMOVE")
)
col.prop(context.scene, "generatorai_styles", text="Style") layout = col.column()
layout = self.layout
layout.use_property_split = True layout.use_property_split = True
layout.use_property_decorate = False layout.use_property_decorate = False
col = layout.column(align=True)
if type != "audio":
col.prop(context.scene, "generatorai_styles", text="Style")
if type == "movie" or type == "image": if type == "movie" or type == "image":
col = layout.column(align=True) col = layout.column(align=True)
@ -978,45 +996,51 @@ class SEQEUNCER_PT_generate_ai(Panel): # UI
col.prop(context.scene, "movie_num_inference_steps", text="Quality Steps") col.prop(context.scene, "movie_num_inference_steps", text="Quality Steps")
col.prop(context.scene, "movie_num_guidance", text="Word Power") col.prop(context.scene, "movie_num_guidance", text="Word Power")
col = layout.column() col = col.column()
row = col.row(align=True) row = col.row(align=True)
sub_row = row.row(align=True) sub_row = row.row(align=True)
sub_row.prop(context.scene, "movie_num_seed", text="Seed") sub_row.prop(context.scene, "movie_num_seed", text="Seed")
row.prop(context.scene, "movie_use_random", text="", icon="QUESTION") row.prop(context.scene, "movie_use_random", text="", icon="QUESTION")
sub_row.active = not context.scene.movie_use_random sub_row.active = not context.scene.movie_use_random
layout = self.layout
layout.use_property_split = True
layout.use_property_decorate = False
col = layout.column(align=True)
col = col.box()
col.prop(context.scene, "generatorai_typeselect", text="Output")
if type == "movie" and ( if type == "movie" and (
movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256"
or movie_model_card == "cerspense/zeroscope_v2_576w" or movie_model_card == "cerspense/zeroscope_v2_576w"
or movie_model_card == "cerspense/zeroscope_v2_XL" or movie_model_card == "cerspense/zeroscope_v2_XL"
): ):
col = layout.column(heading="Upscale", align=True) col = col.column(heading="Upscale", align=True)
col.prop(context.scene, "video_to_video", text="2x") col.prop(context.scene, "video_to_video", text="2x")
if type == "image" and ( if type == "image" and (
image_model_card == "stabilityai/stable-diffusion-xl-base-1.0" image_model_card == "stabilityai/stable-diffusion-xl-base-1.0"
): ):
col = layout.column(heading="Refine", align=True) col = col.column(heading="Refine", align=True)
col.prop(context.scene, "refine_sd", text="Image") col.prop(context.scene, "refine_sd", text="Image")
sub_col = col.row() sub_col = col.row()
sub_col.active = context.scene.refine_sd sub_col.active = context.scene.refine_sd
col = layout.column() col.prop(context.scene, "movie_num_batch", text="Batch Count")
col.prop(context.scene, "input_strips", text="Input")
if input == "input_strips":
col.prop(context.scene, "image_power", text="Strip Power")
col = layout.column() col = layout.column()
col.prop(context.scene, "generatorai_typeselect", text="Output") col = col.box()
col.prop(context.scene, "movie_num_batch", text="Batch Count")
if input == "input_strips": if input == "input_strips":
row = layout.row(align=True) ed = scene.sequence_editor
row.scale_y = 1.1
row = col.row(align=True)
row.scale_y = 1.2
row.operator("sequencer.text_to_generator", text="Generate from Strips") row.operator("sequencer.text_to_generator", text="Generate from Strips")
else: else:
row = layout.row(align=True) row = col.row(align=True)
row.scale_y = 1.1 row.scale_y = 1.2
if type == "movie": if type == "movie":
if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0":
row.operator("sequencer.text_to_generator", text="Generate from Strips") row.operator("sequencer.text_to_generator", text="Generate from Strips")
@ -1098,12 +1122,13 @@ class SEQUENCER_OT_generate_movie(Operator):
if (scene.movie_path or scene.image_path) and input == "input_strips": if (scene.movie_path or scene.image_path) and input == "input_strips":
if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": #img2img if movie_model_card == "stabilityai/stable-diffusion-xl-base-1.0": #img2img
from diffusers import StableDiffusionXLImg2ImgPipeline from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, force_upcast=False)
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
movie_model_card, movie_model_card,
torch_dtype=torch.float16, torch_dtype=torch.float16,
variant="fp16", variant="fp16",
vae=vae,
) )
from diffusers import DPMSolverMultistepScheduler from diffusers import DPMSolverMultistepScheduler
@ -1130,25 +1155,22 @@ class SEQUENCER_OT_generate_movie(Operator):
) )
if low_vram: if low_vram:
#refiner.unet.enable_forward_chunking(chunk_size=1, dim=1) #Heavy refiner.enable_model_cpu_offload()
refiner.enable_vae_slicing() refiner.enable_vae_slicing()
else: else:
refiner.to("cuda") refiner.to("cuda")
else: else: #vid2vid
if movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" or movie_model_card == "cerspense/zeroscope_v2_576w" or scene.image_path: if movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" or movie_model_card == "cerspense/zeroscope_v2_576w" or scene.image_path:
card = "cerspense/zeroscope_v2_XL" card = "cerspense/zeroscope_v2_XL"
safe = False
else: else:
card = movie_model_card card = movie_model_card
safe = True
from diffusers import VideoToVideoSDPipeline from diffusers import VideoToVideoSDPipeline
upscale = VideoToVideoSDPipeline.from_pretrained( upscale = VideoToVideoSDPipeline.from_pretrained(
card, card,
torch_dtype=torch.float16, torch_dtype=torch.float16,
use_safetensors=safe, #use_safetensors=True,
) )
from diffusers import DPMSolverMultistepScheduler from diffusers import DPMSolverMultistepScheduler
@ -1156,9 +1178,9 @@ class SEQUENCER_OT_generate_movie(Operator):
upscale.scheduler = DPMSolverMultistepScheduler.from_config(upscale.scheduler.config) upscale.scheduler = DPMSolverMultistepScheduler.from_config(upscale.scheduler.config)
if low_vram: if low_vram:
torch.cuda.set_per_process_memory_fraction(0.98) #torch.cuda.set_per_process_memory_fraction(0.98)
upscale.enable_model_cpu_offload() upscale.enable_model_cpu_offload()
upscale.unet.enable_forward_chunking(chunk_size=1, dim=1) # here: upscale.unet.enable_forward_chunking(chunk_size=1, dim=1) # heavy:
upscale.enable_vae_slicing() upscale.enable_vae_slicing()
else: else:
upscale.to("cuda") upscale.to("cuda")
@ -1166,6 +1188,7 @@ class SEQUENCER_OT_generate_movie(Operator):
# Models for movie generation # Models for movie generation
else: else:
from diffusers import TextToVideoSDPipeline from diffusers import TextToVideoSDPipeline
pipe = TextToVideoSDPipeline.from_pretrained( pipe = TextToVideoSDPipeline.from_pretrained(
movie_model_card, movie_model_card,
torch_dtype=torch.float16, torch_dtype=torch.float16,
@ -1615,6 +1638,23 @@ class SEQUENCER_OT_generate_audio(Operator):
return {"FINISHED"} return {"FINISHED"}
def find_strip_by_name(scene, name):
for sequence in scene.sequence_editor.sequences:
if sequence.name == name:
return sequence
return None
def get_strip_path(strip):
if strip:
strip_dirname = os.path.dirname(strip.directory)
image_path = bpy.path.abspath(
os.path.join(strip_dirname, strip.elements[0].filename)
)
return image_path
return None
class SEQUENCER_OT_generate_image(Operator): class SEQUENCER_OT_generate_image(Operator):
"""Generate Image""" """Generate Image"""
@ -1655,6 +1695,8 @@ class SEQUENCER_OT_generate_image(Operator):
torch.cuda.empty_cache() torch.cuda.empty_cache()
current_frame = scene.frame_current current_frame = scene.frame_current
type = scene.generatorai_typeselect
input = scene.input_strips
prompt = style_prompt(scene.generate_movie_prompt)[0] prompt = style_prompt(scene.generate_movie_prompt)[0]
negative_prompt = scene.generate_movie_negative_prompt +", "+ style_prompt(scene.generate_movie_prompt)[1] +", nsfw nude nudity" negative_prompt = scene.generate_movie_negative_prompt +", "+ style_prompt(scene.generate_movie_prompt)[1] +", nsfw nude nudity"
image_x = scene.generate_movie_x image_x = scene.generate_movie_x
@ -1668,16 +1710,54 @@ class SEQUENCER_OT_generate_image(Operator):
preferences = context.preferences preferences = context.preferences
addon_prefs = preferences.addons[__name__].preferences addon_prefs = preferences.addons[__name__].preferences
image_model_card = addon_prefs.image_model_card image_model_card = addon_prefs.image_model_card
do_refine = (scene.refine_sd or scene.image_path) and image_model_card == "stabilityai/stable-diffusion-xl-base-1.0" do_inpaint = (input == "input_strips" and type == "image" and scene.inpaint_selected_strip)
do_refine = False #(scene.refine_sd or scene.image_path) and image_model_card == "stabilityai/stable-diffusion-xl-base-1.0"
# LOADING MODELS # LOADING MODELS
print("\nModel: " + image_model_card) print("\nModel: " + image_model_card)
# Models for stable diffusion # models for inpaint
if not image_model_card == "DeepFloyd/IF-I-M-v1.0": if do_inpaint:
from diffusers import StableDiffusionXLInpaintPipeline, AutoencoderKL
from diffusers.utils import load_image
# clear the VRAM
if torch.cuda.is_available():
torch.cuda.empty_cache()
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, force_upcast=False)
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", force_upcast=False) #use_safetensors=True
if low_vram:
#torch.cuda.set_per_process_memory_fraction(0.99)
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
else:
pipe.to("cuda")
# refiner = StableDiffusionXLInpaintPipeline.from_pretrained(
# "stabilityai/stable-diffusion-xl-refiner-1.0",
# text_encoder_2=pipe.text_encoder_2,
# vae = vae,
# #vae=pipe.vae,
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16",
# )
# if low_vram:
# refiner.enable_model_cpu_offload()
# refiner.enable_vae_slicing()
# else:
# refiner.to("cuda")
# Models for stable diffusion
elif not image_model_card == "DeepFloyd/IF-I-M-v1.0":
from diffusers import AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, force_upcast=False)
pipe = DiffusionPipeline.from_pretrained( pipe = DiffusionPipeline.from_pretrained(
image_model_card, image_model_card,
vae=vae,
torch_dtype=torch.float16, torch_dtype=torch.float16,
variant="fp16", variant="fp16",
) )
@ -1747,11 +1827,12 @@ class SEQUENCER_OT_generate_image(Operator):
# Add refiner model if chosen. # Add refiner model if chosen.
if do_refine: if do_refine:
print("Refine Model: " + "stabilityai/stable-diffusion-xl-refiner-1.0") print("Refine Model: " + "stabilityai/stable-diffusion-xl-refiner-1.0")
from diffusers import StableDiffusionXLImg2ImgPipeline from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, force_upcast=False)
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0", "stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=pipe.text_encoder_2, text_encoder_2=pipe.text_encoder_2,
vae=pipe.vae, vae=vae,
torch_dtype=torch.float16, torch_dtype=torch.float16,
variant="fp16", variant="fp16",
) )
@ -1836,6 +1917,28 @@ class SEQUENCER_OT_generate_image(Operator):
# image[0].save("./if_stage_III.png") # image[0].save("./if_stage_III.png")
image = image[0] image = image[0]
# Inpaint
elif do_inpaint:
print("Process: Inpaint")
img_path = load_image(scene.image_path).convert("RGB")
mask_strip =find_strip_by_name(scene, scene.inpaint_selected_strip)
if not mask_strip:
return
mask_path = get_strip_path(mask_strip)
init_image = load_image(img_path).convert("RGB")
mask_image = load_image(mask_path).convert("RGB")
image = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=image_num_inference_steps,
strength=1.00 - scene.image_power,
).images[0]
# Img2img # Img2img
elif scene.image_path: elif scene.image_path:
print("Process: Image to image") print("Process: Image to image")
@ -2003,7 +2106,7 @@ class SEQUENCER_OT_strip_to_generatorAI(Operator):
if len(strips) > 1: if len(strips) > 1:
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0] styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0]
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[1] styled_negative_prompt = style_prompt(strip_prompt + ", " + prompt)[1]
else: else:
styled_prompt = style_prompt(prompt)[0] styled_prompt = style_prompt(prompt)[0]
styled_negative_prompt = style_prompt(prompt)[1] styled_negative_prompt = style_prompt(prompt)[1]
@ -2048,7 +2151,7 @@ class SEQUENCER_OT_strip_to_generatorAI(Operator):
if len(strips) > 1: if len(strips) > 1:
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0] styled_prompt = style_prompt(strip_prompt + ", " + prompt)[0]
styled_prompt = style_prompt(strip_prompt + ", " + prompt)[1] styled_negative_prompt = style_prompt(strip_prompt + ", " + prompt)[1]
else: else:
styled_prompt = style_prompt(prompt)[0] styled_prompt = style_prompt(prompt)[0]
styled_negative_prompt = style_prompt(prompt)[1] styled_negative_prompt = style_prompt(prompt)[1]
@ -2227,6 +2330,9 @@ def register():
default="en", default="en",
) )
# Inpaint
bpy.types.Scene.inpaint_selected_strip = bpy.props.StringProperty(name="inpaint_selected_strip", default="")
# Upscale # Upscale
bpy.types.Scene.video_to_video = bpy.props.BoolProperty( bpy.types.Scene.video_to_video = bpy.props.BoolProperty(
name="video_to_video", name="video_to_video",
@ -2271,6 +2377,7 @@ def register():
default="no_style", default="no_style",
) )
for cls in classes: for cls in classes:
bpy.utils.register_class(cls) bpy.utils.register_class(cls)
@ -2292,6 +2399,7 @@ def unregister():
del bpy.types.Scene.image_path del bpy.types.Scene.image_path
del bpy.types.Scene.refine_sd del bpy.types.Scene.refine_sd
del bpy.types.Scene.generatorai_styles del bpy.types.Scene.generatorai_styles
del bpy.types.Scene.inpaint_selected_strip
if __name__ == "__main__": if __name__ == "__main__":
unregister() unregister()

Loading…
Cancel
Save