tin2tin 1 year ago committed by GitHub
parent
commit
f452a834e4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 90
      __init__.py

90
__init__.py

@ -529,10 +529,11 @@ def install_modules(self):
import_module(self, "scipy", "scipy")
import_module(self, "IPython", "IPython")
import_module(self, "bark", "git+https://github.com/suno-ai/bark.git")
import_module(self, "bark", "git+https://github.com/suno-ai/bark.git")
#import_module(self, "bark", "git+https://github.com/suno-ai/bark.git")
import_module(self, "xformers", "xformers")
import_module(self, "imageio", "imageio")
import_module(self, "imwatermark", "invisible-watermark>=0.2.0")
if os_platform == "Windows":
subprocess.check_call(
[
@ -576,6 +577,21 @@ def install_modules(self):
]
)
import_module(self, "modelscope", "modelscope==1.8.4")
#import_module(self, "xformers", "xformers==0.0.20")
#import_module(self, "torch", "torch==2.0.1")
import_module(self, "open_clip_torch", "open_clip_torch>=2.0.2")
#import_module(self, "opencv_python_headless", "opencv-python-headless")
#import_module(self, "opencv_python", "opencv-python")
import_module(self, "einops", "einops>=0.4")
import_module(self, "rotary_embedding_torch", "rotary-embedding-torch")
import_module(self, "fairscale", "fairscale")
#import_module(self, "scipy", "scipy")
#import_module(self, "imageio", "imageio")
import_module(self, "pytorch_lightning", "pytorch-lightning")
import_module(self, "torchsde", "torchsde")
import_module(self, "easydict", "easydict")
def get_module_dependencies(module_name):
"""
@ -716,11 +732,6 @@ class GeneratorAddonPreferences(AddonPreferences):
"Stable Diffusion XL 1.0 (1024x1024)",
"Stable Diffusion XL 1.0",
),
(
"Yntec/RadiantCinemagic",
"Radiant Cinemagic (512x512)",
"Radiant Cinemagic (512x512)",
),
("DeepFloyd/IF-I-M-v1.0", "DeepFloyd/IF-I-M-v1.0", "DeepFloyd"),
],
default="stabilityai/stable-diffusion-xl-base-1.0",
@ -937,7 +948,7 @@ class SEQEUNCER_PT_generate_ai(Panel): # UI
if input == "input_strips":
col.prop(context.scene, "image_power", text="Strip Power")
if type == "image":
if input == "input_strips" and type == "image":
col.prop_search(scene, "inpaint_selected_strip", scene.sequence_editor, "sequences", text="Inpaint Mask", icon='SEQ_STRIP_DUPLICATE')
col = layout.column(align=True)
@ -1040,6 +1051,11 @@ class SEQEUNCER_PT_generate_ai(Panel): # UI
row.operator("sequencer.generate_audio", text="Generate")
class NoWatermark:
def apply_watermark(self, img):
return img
class SEQUENCER_OT_generate_movie(Operator):
"""Generate Video"""
@ -1123,6 +1139,8 @@ class SEQUENCER_OT_generate_movie(Operator):
pipe.scheduler.config
)
pipe.watermark = NoWatermark()
if low_vram:
pipe.enable_model_cpu_offload()
#pipe.unet.enable_forward_chunking(chunk_size=1, dim=1) # Heavy
@ -1147,11 +1165,27 @@ class SEQUENCER_OT_generate_movie(Operator):
else:
refiner.to("cuda")
else: #vid2vid
# if movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" or movie_model_card == "cerspense/zeroscope_v2_576w" or scene.image_path:
# card = "cerspense/zeroscope_v2_XL"
# else:
card = movie_model_card
# elif scene.image_path: #img2vid
# from modelscope.pipelines import pipeline
# from modelscope.outputs import OutputKeys
# #pipe = pipeline(task='image-to-video', model='damo-vilab/MS-Image2Video', model_revision='v1.1.0')
# pipe = pipeline(task='image-to-video', model='damo/Image-to-Video', model_revision='v1.1.0')
# #pipe = pipeline(task='image-to-video', model='https://dagshub.com/model/damo-video-to-video/src/main/data', model_revision='v1.1.0')
## if low_vram:
## pipe.enable_model_cpu_offload()
## pipe.enable_vae_tiling()
## pipe.enable_vae_slicing()
## else:
# refiner.to("cuda")
else: # vid2vid / img2vid
if movie_model_card == "cerspense/zeroscope_v2_dark_30x448x256" or movie_model_card == "cerspense/zeroscope_v2_576w" or scene.image_path:
card = "cerspense/zeroscope_v2_XL"
else:
card = movie_model_card
from diffusers import VideoToVideoSDPipeline
upscale = VideoToVideoSDPipeline.from_pretrained(
@ -1323,6 +1357,33 @@ class SEQUENCER_OT_generate_movie(Operator):
generator=generator,
).frames
# elif scene.image_path: #img2vid
# print("\nProcess: Image to video")
#
# # IMG_PATH: your image path (url or local file)
# video_frames = pipe(scene.image_path, output_video='./output.mp4').frames
# output_video_path = pipe(scene.image_path, output_video='./output.mp4')[OutputKeys.OUTPUT_VIDEO]
# print(output_video_path)
#
# #video = process_image(scene.image_path, int(scene.generate_movie_frames))
# Upscale video
# if scene.video_to_video:
# video = [
# Image.fromarray(frame).resize((closest_divisible_64(int(x * 2)), closest_divisible_64(int(y * 2))))
# for frame in video
# ]
# video_frames = upscale(
# prompt,
# video=video,
# strength=1.00 - scene.image_power,
# negative_prompt=negative_prompt,
# num_inference_steps=movie_num_inference_steps,
# guidance_scale=movie_num_guidance,
# generator=generator,
# ).frames
#video_frames = np.array(video_frames)
# Generation of movie
@ -1726,6 +1787,9 @@ class SEQUENCER_OT_generate_image(Operator):
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) vae=vae,
pipe = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting", torch_dtype=torch.float16, variant="fp16") #use_safetensors=True
#pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16") #use_safetensors=True
pipe.watermark = NoWatermark()
if low_vram:
#torch.cuda.set_per_process_memory_fraction(0.99)
pipe.enable_model_cpu_offload()
@ -1844,6 +1908,8 @@ class SEQUENCER_OT_generate_image(Operator):
variant="fp16",
)
refiner.watermark = NoWatermark()
if low_vram:
refiner.enable_model_cpu_offload()
refiner.enable_vae_tiling()

Loading…
Cancel
Save