Browse Source

Revert "SDXL-Lightning fix"

This reverts commit 8b038368e7.
pull/101/head
tin2tin 9 months ago
parent
commit
e5614b3129
  1. 73
      __init__.py

73
__init__.py

@ -1143,7 +1143,7 @@ class GeneratorAddonPreferences(AddonPreferences):
"Stable Diffusion XL 1.0 (1024x1024)",
"stabilityai/stable-diffusion-xl-base-1.0",
),
("ByteDance/SDXL-Lightning", "SDXL-Lightning (1024 x 1024)", "ByteDance/SDXL-Lightning"),
("ByteDance/SDXL-Lightning", "SDXL-Lightning 2 Step (1024 x 1024)", "ByteDance/SDXL-Lightning"),
# ("stabilityai/stable-cascade", "Stable Cascade (1024 x 1024)", "stabilityai/stable-cascade"),
# ("thibaud/sdxl_dpo_turbo", "SDXL DPO TURBO (1024x1024)", "thibaud/sdxl_dpo_turbo"),
# (
@ -1695,7 +1695,7 @@ class SEQUENCER_PT_pallaidium_panel(Panel): # UI
"svd_decode_chunk_size",
text="Decode Frames",
)
if bpy.context.scene.sequence_editor is not None and image_model_card != "diffusers/controlnet-canny-sdxl-1.0-small":
if bpy.context.scene.sequence_editor is not None and image_model_card != "diffusers/controlnet-canny-sdxl-1.0-small" and image_model_card != "ByteDance/SDXL-Lightning":
if len(bpy.context.scene.sequence_editor.sequences) > 0:
if input == "input_strips" and type == "image":
col.prop_search(
@ -1821,9 +1821,12 @@ class SEQUENCER_PT_pallaidium_panel(Panel): # UI
)
else:
col.prop(
context.scene, "movie_num_inference_steps", text="Quality Steps"
)
if type == "image" and image_model_card == "ByteDance/SDXL-Lightning":
pass
else:
col.prop(
context.scene, "movie_num_inference_steps", text="Quality Steps"
)
if (
type == "movie"
@ -1836,6 +1839,9 @@ class SEQUENCER_PT_pallaidium_panel(Panel): # UI
scene.use_lcm and not (
type == "image"
and image_model_card == "Lykon/dreamshaper-8"
) and not (
type == "image"
and image_model_card == image_model_card == "ByteDance/SDXL-Lightning"
)
):
pass
@ -3177,6 +3183,7 @@ class SEQUENCER_OT_generate_image(Operator):
and not image_model_card == "monster-labs/control_v1p_sdxl_qrcode_monster"
and not image_model_card == "Salesforce/blipdiffusion"
and not image_model_card == "Lykon/dreamshaper-8"
and not image_model_card == "ByteDance/SDXL-Lightning"
)
do_convert = (
(scene.image_path or scene.movie_path)
@ -3186,6 +3193,7 @@ class SEQUENCER_OT_generate_image(Operator):
and not image_model_card == "h94/IP-Adapter"
and not image_model_card == "monster-labs/control_v1p_sdxl_qrcode_monster"
and not image_model_card == "Salesforce/blipdiffusion"
and not image_model_card == "ByteDance/SDXL-Lightning"
and not do_inpaint
)
do_refine = scene.refine_sd and not do_convert
@ -3757,7 +3765,7 @@ class SEQUENCER_OT_generate_image(Operator):
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_2step_lora.safetensors" # Use the correct ckpt for your step setting!
ckpt = "sdxl_lightning_2step_lora.pth" # Use the correct ckpt for your step setting!
# Load model.
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
@ -3768,43 +3776,20 @@ class SEQUENCER_OT_generate_image(Operator):
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
elif image_model_card == "dataautogpt3/ProteusV0.3":
from diffusers import StableDiffusionXLPipeline
# from diffusers import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, KDPM2AncestralDiscreteScheduler
from diffusers import AutoencoderKL
# vae = AutoencoderKL.from_pretrained(
# "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
# )
pipe = StableDiffusionXLPipeline.from_single_file(
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"dataautogpt3/ProteusV0.3",
#vae=vae,
vae=vae,
torch_dtype=torch.float16,
#variant="fp16",
)
# from diffusers import DPMSolverMultistepScheduler
# pipe.scheduler = DPMSolverMultistepScheduler.from_config(
# pipe.scheduler.config
# )
if low_vram():
pipe.enable_model_cpu_offload()
else:
pipe.to(gfx_device)
# # Load VAE component
# vae = AutoencoderKL.from_pretrained(
# "madebyollin/sdxl-vae-fp16-fix",
# torch_dtype=torch.float16
# )
# Configure the pipeline
#pipe = StableDiffusionXLPipeline.from_pretrained(
# pipe = AutoPipelineForText2Image.from_pretrained(
# "dataautogpt3/ProteusV0.2",
# #vae=vae,
# torch_dtype=torch.float16,
# local_files_only=local_files_only,
# )
#pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(gfx_device)
elif image_model_card == "stabilityai/stable-cascade":
import torch
@ -4325,6 +4310,18 @@ class SEQUENCER_OT_generate_image(Operator):
).images[0]
decoder = None
elif image_model_card == "dataautogpt3/ProteusV0.3":
image = pipe(
# prompt_embeds=prompt, # for compel - long prompts
prompt,
negative_prompt=negative_prompt,
num_inference_steps=image_num_inference_steps,
guidance_scale=image_num_guidance,
height=y,
width=x,
generator=generator,
).images[0]
# Inpaint
elif do_inpaint:
print("Process: Inpaint")

Loading…
Cancel
Save