|
|
|
@ -1143,7 +1143,7 @@ class GeneratorAddonPreferences(AddonPreferences):
|
|
|
|
|
"Stable Diffusion XL 1.0 (1024x1024)", |
|
|
|
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
|
|
|
), |
|
|
|
|
("ByteDance/SDXL-Lightning", "SDXL-Lightning 2 Step (1024 x 1024)", "ByteDance/SDXL-Lightning"), |
|
|
|
|
("ByteDance/SDXL-Lightning", "SDXL-Lightning (1024 x 1024)", "ByteDance/SDXL-Lightning"), |
|
|
|
|
# ("stabilityai/stable-cascade", "Stable Cascade (1024 x 1024)", "stabilityai/stable-cascade"), |
|
|
|
|
# ("thibaud/sdxl_dpo_turbo", "SDXL DPO TURBO (1024x1024)", "thibaud/sdxl_dpo_turbo"), |
|
|
|
|
# ( |
|
|
|
@ -1695,7 +1695,7 @@ class SEQUENCER_PT_pallaidium_panel(Panel): # UI
|
|
|
|
|
"svd_decode_chunk_size", |
|
|
|
|
text="Decode Frames", |
|
|
|
|
) |
|
|
|
|
if bpy.context.scene.sequence_editor is not None and image_model_card != "diffusers/controlnet-canny-sdxl-1.0-small" and image_model_card != "ByteDance/SDXL-Lightning": |
|
|
|
|
if bpy.context.scene.sequence_editor is not None and image_model_card != "diffusers/controlnet-canny-sdxl-1.0-small": |
|
|
|
|
if len(bpy.context.scene.sequence_editor.sequences) > 0: |
|
|
|
|
if input == "input_strips" and type == "image": |
|
|
|
|
col.prop_search( |
|
|
|
@ -1820,9 +1820,6 @@ class SEQUENCER_PT_pallaidium_panel(Panel): # UI
|
|
|
|
|
context.scene, "movie_num_inference_steps", text="Quality Steps" |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
if type == "image" and image_model_card == "ByteDance/SDXL-Lightning": |
|
|
|
|
pass |
|
|
|
|
else: |
|
|
|
|
col.prop( |
|
|
|
|
context.scene, "movie_num_inference_steps", text="Quality Steps" |
|
|
|
@ -1839,9 +1836,6 @@ class SEQUENCER_PT_pallaidium_panel(Panel): # UI
|
|
|
|
|
scene.use_lcm and not ( |
|
|
|
|
type == "image" |
|
|
|
|
and image_model_card == "Lykon/dreamshaper-8" |
|
|
|
|
) and not ( |
|
|
|
|
type == "image" |
|
|
|
|
and image_model_card == image_model_card == "ByteDance/SDXL-Lightning" |
|
|
|
|
) |
|
|
|
|
): |
|
|
|
|
pass |
|
|
|
@ -3183,7 +3177,6 @@ class SEQUENCER_OT_generate_image(Operator):
|
|
|
|
|
and not image_model_card == "monster-labs/control_v1p_sdxl_qrcode_monster" |
|
|
|
|
and not image_model_card == "Salesforce/blipdiffusion" |
|
|
|
|
and not image_model_card == "Lykon/dreamshaper-8" |
|
|
|
|
and not image_model_card == "ByteDance/SDXL-Lightning" |
|
|
|
|
) |
|
|
|
|
do_convert = ( |
|
|
|
|
(scene.image_path or scene.movie_path) |
|
|
|
@ -3193,7 +3186,6 @@ class SEQUENCER_OT_generate_image(Operator):
|
|
|
|
|
and not image_model_card == "h94/IP-Adapter" |
|
|
|
|
and not image_model_card == "monster-labs/control_v1p_sdxl_qrcode_monster" |
|
|
|
|
and not image_model_card == "Salesforce/blipdiffusion" |
|
|
|
|
and not image_model_card == "ByteDance/SDXL-Lightning" |
|
|
|
|
and not do_inpaint |
|
|
|
|
) |
|
|
|
|
do_refine = scene.refine_sd and not do_convert |
|
|
|
@ -3765,7 +3757,7 @@ class SEQUENCER_OT_generate_image(Operator):
|
|
|
|
|
|
|
|
|
|
base = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
|
repo = "ByteDance/SDXL-Lightning" |
|
|
|
|
ckpt = "sdxl_lightning_2step_lora.pth" # Use the correct ckpt for your step setting! |
|
|
|
|
ckpt = "sdxl_lightning_2step_lora.safetensors" # Use the correct ckpt for your step setting! |
|
|
|
|
|
|
|
|
|
# Load model. |
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") |
|
|
|
@ -3776,21 +3768,44 @@ class SEQUENCER_OT_generate_image(Operator):
|
|
|
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") |
|
|
|
|
|
|
|
|
|
elif image_model_card == "dataautogpt3/ProteusV0.3": |
|
|
|
|
from diffusers import StableDiffusionXLPipeline, KDPM2AncestralDiscreteScheduler |
|
|
|
|
from diffusers import AutoencoderKL |
|
|
|
|
from diffusers import StableDiffusionXLPipeline |
|
|
|
|
# from diffusers import AutoencoderKL |
|
|
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
|
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
|
|
|
) |
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
|
|
|
# vae = AutoencoderKL.from_pretrained( |
|
|
|
|
# "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
|
|
|
# ) |
|
|
|
|
pipe = StableDiffusionXLPipeline.from_single_file( |
|
|
|
|
"dataautogpt3/ProteusV0.3", |
|
|
|
|
vae=vae, |
|
|
|
|
#vae=vae, |
|
|
|
|
torch_dtype=torch.float16, |
|
|
|
|
#variant="fp16", |
|
|
|
|
) |
|
|
|
|
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
# from diffusers import DPMSolverMultistepScheduler |
|
|
|
|
# pipe.scheduler = DPMSolverMultistepScheduler.from_config( |
|
|
|
|
# pipe.scheduler.config |
|
|
|
|
# ) |
|
|
|
|
|
|
|
|
|
if low_vram(): |
|
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
|
else: |
|
|
|
|
pipe.to(gfx_device) |
|
|
|
|
|
|
|
|
|
# # Load VAE component |
|
|
|
|
# vae = AutoencoderKL.from_pretrained( |
|
|
|
|
# "madebyollin/sdxl-vae-fp16-fix", |
|
|
|
|
# torch_dtype=torch.float16 |
|
|
|
|
# ) |
|
|
|
|
|
|
|
|
|
# Configure the pipeline |
|
|
|
|
#pipe = StableDiffusionXLPipeline.from_pretrained( |
|
|
|
|
# pipe = AutoPipelineForText2Image.from_pretrained( |
|
|
|
|
# "dataautogpt3/ProteusV0.2", |
|
|
|
|
# #vae=vae, |
|
|
|
|
# torch_dtype=torch.float16, |
|
|
|
|
# local_files_only=local_files_only, |
|
|
|
|
# ) |
|
|
|
|
#pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
|
|
|
|
elif image_model_card == "stabilityai/stable-cascade": |
|
|
|
|
import torch |
|
|
|
|
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline |
|
|
|
@ -4310,18 +4325,6 @@ class SEQUENCER_OT_generate_image(Operator):
|
|
|
|
|
).images[0] |
|
|
|
|
decoder = None |
|
|
|
|
|
|
|
|
|
elif image_model_card == "dataautogpt3/ProteusV0.3": |
|
|
|
|
image = pipe( |
|
|
|
|
# prompt_embeds=prompt, # for compel - long prompts |
|
|
|
|
prompt, |
|
|
|
|
negative_prompt=negative_prompt, |
|
|
|
|
num_inference_steps=image_num_inference_steps, |
|
|
|
|
guidance_scale=image_num_guidance, |
|
|
|
|
height=y, |
|
|
|
|
width=x, |
|
|
|
|
generator=generator, |
|
|
|
|
).images[0] |
|
|
|
|
|
|
|
|
|
# Inpaint |
|
|
|
|
elif do_inpaint: |
|
|
|
|
print("Process: Inpaint") |
|
|
|
|