Browse Source

Add FreeU for Zeroscope

Installation_fix
tin2tin 1 year ago committed by GitHub
parent
commit
5b5cabe33d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 298
      free_lunch_utils.py

298
free_lunch_utils.py

@ -1,10 +1,10 @@
# from https://github.com/lyn-rgb/FreeU_Diffusers
from typing import Any, Dict, Optional, Tuple
import torch
import torch.fft as fft
from diffusers.models.unet_2d_condition import logger
from diffusers.utils import is_torch_version
from typing import Any, Dict, List, Optional, Tuple, Union
from diffusers.models.unet_2d_condition import logger as logger2d
from diffusers.models.unet_3d_condition import logger as logger3d
def isinstance_str(x: object, cls_name: str):
@ -22,15 +22,25 @@ def isinstance_str(x: object, cls_name: str):
return False
def Fourier_filter(x, threshold, scale):
dtype = x.dtype
x = x.type(torch.float32)
def Fourier_filter(x_in, threshold, scale):
"""
Updated Fourier filter based on:
https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
"""
x = x_in
B, C, H, W = x.shape
# Non-power of 2 images must be float32
if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
x = x.to(dtype=torch.float32)
# FFT
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W)).cuda()
mask = torch.ones((B, C, H, W), device=x.device)
crow, ccol = H // 2, W // 2
mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
@ -40,18 +50,29 @@ def Fourier_filter(x, threshold, scale):
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
x_filtered = x_filtered.type(dtype)
return x_filtered
return x_filtered.to(dtype=x_in.dtype)
def register_upblock2d(model):
"""
Register UpBlock2D for UNet2DCondition.
"""
def up_forward(self):
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
def forward(
hidden_states,
res_hidden_states_tuple,
temb=None,
upsample_size=None,
scale: float = 1.0
):
logger2d.debug(f"in upblock2d, hidden states shape: {hidden_states.shape}")
for resnet in self.resnets:
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
#print(f"in upblock2d, hidden states shape: {hidden_states.shape}")
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
if self.training and self.gradient_checkpointing:
@ -71,11 +92,11 @@ def register_upblock2d(model):
create_custom_forward(resnet), hidden_states, temb
)
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = resnet(hidden_states, temb, scale=scale)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
return hidden_states
@ -87,11 +108,22 @@ def register_upblock2d(model):
def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
"""
Register UpBlock2D with FreeU for UNet2DCondition.
"""
def up_forward(self):
def forward(hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
def forward(
hidden_states,
res_hidden_states_tuple,
temb=None,
upsample_size=None,
scale: float = 1.0
):
logger2d.debug(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
for resnet in self.resnets:
# pop res hidden states
#print(f"in free upblock2d, hidden states shape: {hidden_states.shape}")
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
@ -144,6 +176,10 @@ def register_free_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
def register_crossattn_upblock2d(model):
"""
Register CrossAttn UpBlock2D for UNet2DCondition.
"""
def up_forward(self):
def forward(
hidden_states: torch.FloatTensor,
@ -155,9 +191,12 @@ def register_crossattn_upblock2d(model):
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
logger2d.debug(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
#print(f"in crossatten upblock2d, hidden states shape: {hidden_states.shape}")
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
@ -192,7 +231,7 @@ def register_crossattn_upblock2d(model):
**ckpt_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
@ -204,7 +243,7 @@ def register_crossattn_upblock2d(model):
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
return hidden_states
@ -216,6 +255,10 @@ def register_crossattn_upblock2d(model):
def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
"""
Register CrossAttn UpBlock2D with FreeU for UNet2DCondition.
"""
def up_forward(self):
def forward(
hidden_states: torch.FloatTensor,
@ -227,9 +270,12 @@ def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
):
logger2d.debug(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
for resnet, attn in zip(self.resnets, self.attentions):
# pop res hidden states
#print(f"in free crossatten upblock2d, hidden states shape: {hidden_states.shape}")
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
@ -275,7 +321,7 @@ def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
**ckpt_kwargs,
)[0]
else:
hidden_states = resnet(hidden_states, temb)
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
@ -287,7 +333,7 @@ def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
return hidden_states
@ -300,3 +346,213 @@ def register_free_crossattn_upblock2d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
setattr(upsample_block, 'b2', b2)
setattr(upsample_block, 's1', s1)
setattr(upsample_block, 's2', s2)
def register_upblock3d(model):
"""
Register UpBlock3D for UNet3DCondition.
"""
def up_forward(self):
def forward(
hidden_states,
res_hidden_states_tuple,
temb=None,
upsample_size=None,
num_frames=1
):
logger3d.debug(f"in upblock3d, hidden states shape: {hidden_states.shape}")
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "UpBlock3D"):
upsample_block.forward = up_forward(upsample_block)
def register_free_upblock3d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
"""
Register UpBlock3D with FreeU for UNet3DCondition.
"""
def up_forward(self):
def forward(
hidden_states,
res_hidden_states_tuple,
temb=None,
upsample_size=None,
num_frames=1
):
logger3d.debug(f"in free upblock3d, hidden states shape: {hidden_states.shape}")
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# --------------- FreeU code -----------------------
# Only operate on the first two stages
if hidden_states.shape[1] == 1280:
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
if hidden_states.shape[1] == 640:
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
# ---------------------------------------------------------
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "UpBlock3D"):
upsample_block.forward = up_forward(upsample_block)
setattr(upsample_block, 'b1', b1)
setattr(upsample_block, 'b2', b2)
setattr(upsample_block, 's1', s1)
setattr(upsample_block, 's2', s2)
def register_crossattn_upblock3d(model):
"""
Register CrossAttn UpBlock3D for UNet3DCondition.
"""
def up_forward(self):
def forward(
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1
):
logger3d.debug(f"in crossatten upblock3d, hidden states shape: {hidden_states.shape}")
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "CrossAttnUpBlock3D"):
upsample_block.forward = up_forward(upsample_block)
def register_free_crossattn_upblock3d(model, b1=1.2, b2=1.4, s1=0.9, s2=0.2):
"""
Register CrossAttn UpBlock3D with FreeU for UNet3DCondition.
"""
def up_forward(self):
def forward(
hidden_states: torch.FloatTensor,
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
temb: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
upsample_size: Optional[int] = None,
attention_mask: Optional[torch.FloatTensor] = None,
num_frames: int = 1
):
logger3d.debug(f"in free crossatten upblock3d, hidden states shape: {hidden_states.shape}")
for resnet, temp_conv, attn, temp_attn in zip(
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
):
# pop res hidden states
res_hidden_states = res_hidden_states_tuple[-1]
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
# --------------- FreeU code -----------------------
# Only operate on the first two stages
if hidden_states.shape[1] == 1280:
hidden_states[:,:640] = hidden_states[:,:640] * self.b1
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s1)
if hidden_states.shape[1] == 640:
hidden_states[:,:320] = hidden_states[:,:320] * self.b2
res_hidden_states = Fourier_filter(res_hidden_states, threshold=1, scale=self.s2)
# ---------------------------------------------------------
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
hidden_states = resnet(hidden_states, temb)
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
hidden_states = temp_attn(
hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False
)[0]
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states, upsample_size)
return hidden_states
return forward
for i, upsample_block in enumerate(model.unet.up_blocks):
if isinstance_str(upsample_block, "CrossAttnUpBlock3D"):
upsample_block.forward = up_forward(upsample_block)
setattr(upsample_block, 'b1', b1)
setattr(upsample_block, 'b2', b2)
setattr(upsample_block, 's1', s1)
setattr(upsample_block, 's2', s2)

Loading…
Cancel
Save