|
|
@ -3776,44 +3776,21 @@ class SEQUENCER_OT_generate_image(Operator): |
|
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") |
|
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") |
|
|
|
|
|
|
|
|
|
|
|
elif image_model_card == "dataautogpt3/ProteusV0.3": |
|
|
|
elif image_model_card == "dataautogpt3/ProteusV0.3": |
|
|
|
from diffusers import StableDiffusionXLPipeline |
|
|
|
from diffusers import StableDiffusionXLPipeline, KDPM2AncestralDiscreteScheduler |
|
|
|
# from diffusers import AutoencoderKL |
|
|
|
from diffusers import AutoencoderKL |
|
|
|
|
|
|
|
|
|
|
|
# vae = AutoencoderKL.from_pretrained( |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
|
# "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
|
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
|
|
# ) |
|
|
|
) |
|
|
|
pipe = StableDiffusionXLPipeline.from_single_file( |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
|
|
"dataautogpt3/ProteusV0.3", |
|
|
|
"dataautogpt3/ProteusV0.3", |
|
|
|
#vae=vae, |
|
|
|
vae=vae, |
|
|
|
torch_dtype=torch.float16, |
|
|
|
torch_dtype=torch.float16, |
|
|
|
#variant="fp16", |
|
|
|
#variant="fp16", |
|
|
|
) |
|
|
|
) |
|
|
|
# from diffusers import DPMSolverMultistepScheduler |
|
|
|
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
# pipe.scheduler = DPMSolverMultistepScheduler.from_config( |
|
|
|
|
|
|
|
# pipe.scheduler.config |
|
|
|
|
|
|
|
# ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if low_vram(): |
|
|
|
|
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
|
|
else: |
|
|
|
|
|
|
|
pipe.to(gfx_device) |
|
|
|
pipe.to(gfx_device) |
|
|
|
|
|
|
|
|
|
|
|
# # Load VAE component |
|
|
|
|
|
|
|
# vae = AutoencoderKL.from_pretrained( |
|
|
|
|
|
|
|
# "madebyollin/sdxl-vae-fp16-fix", |
|
|
|
|
|
|
|
# torch_dtype=torch.float16 |
|
|
|
|
|
|
|
# ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Configure the pipeline |
|
|
|
|
|
|
|
#pipe = StableDiffusionXLPipeline.from_pretrained( |
|
|
|
|
|
|
|
# pipe = AutoPipelineForText2Image.from_pretrained( |
|
|
|
|
|
|
|
# "dataautogpt3/ProteusV0.2", |
|
|
|
|
|
|
|
# #vae=vae, |
|
|
|
|
|
|
|
# torch_dtype=torch.float16, |
|
|
|
|
|
|
|
# local_files_only=local_files_only, |
|
|
|
|
|
|
|
# ) |
|
|
|
|
|
|
|
#pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif image_model_card == "stabilityai/stable-cascade": |
|
|
|
elif image_model_card == "stabilityai/stable-cascade": |
|
|
|
import torch |
|
|
|
import torch |
|
|
|
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline |
|
|
|
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline |
|
|
@ -4333,6 +4310,18 @@ class SEQUENCER_OT_generate_image(Operator): |
|
|
|
).images[0] |
|
|
|
).images[0] |
|
|
|
decoder = None |
|
|
|
decoder = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif image_model_card == "dataautogpt3/ProteusV0.3": |
|
|
|
|
|
|
|
image = pipe( |
|
|
|
|
|
|
|
# prompt_embeds=prompt, # for compel - long prompts |
|
|
|
|
|
|
|
prompt, |
|
|
|
|
|
|
|
negative_prompt=negative_prompt, |
|
|
|
|
|
|
|
num_inference_steps=image_num_inference_steps, |
|
|
|
|
|
|
|
guidance_scale=image_num_guidance, |
|
|
|
|
|
|
|
height=y, |
|
|
|
|
|
|
|
width=x, |
|
|
|
|
|
|
|
generator=generator, |
|
|
|
|
|
|
|
).images[0] |
|
|
|
|
|
|
|
|
|
|
|
# Inpaint |
|
|
|
# Inpaint |
|
|
|
elif do_inpaint: |
|
|
|
elif do_inpaint: |
|
|
|
print("Process: Inpaint") |
|
|
|
print("Process: Inpaint") |
|
|
|