Browse Source

Merge branch 'comfyanonymous:master' into bugfix/extra_data

pull/820/head
Dr.Lt.Data 10 months ago committed by GitHub
parent
commit
fba067a8d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 2
      .github/workflows/test-ui.yaml
  2. 1
      .gitignore
  3. 9
      .vscode/settings.json
  4. 54
      app/app_settings.py
  5. 140
      app/user_manager.py
  6. 6
      comfy/cli_args.py
  7. 4
      comfy/clip_model.py
  8. 23
      comfy/clip_vision.py
  9. 5
      comfy/controlnet.py
  10. 4
      comfy/latent_formats.py
  11. 5
      comfy/ldm/models/autoencoder.py
  12. 36
      comfy/ldm/modules/attention.py
  13. 2
      comfy/ldm/modules/diffusionmodules/model.py
  14. 6
      comfy/ldm/modules/diffusionmodules/openaimodel.py
  15. 16
      comfy/ldm/modules/diffusionmodules/upscaling.py
  16. 6
      comfy/ldm/modules/diffusionmodules/util.py
  17. 4
      comfy/ldm/modules/encoders/noise_aug_modules.py
  18. 28
      comfy/ldm/modules/sub_quadratic_attention.py
  19. 8
      comfy/ldm/modules/temporal_ae.py
  20. 111
      comfy/model_base.py
  21. 8
      comfy/model_detection.py
  22. 69
      comfy/model_management.py
  23. 19
      comfy/model_patcher.py
  24. 92
      comfy/ops.py
  25. 4
      comfy/sample.py
  26. 19
      comfy/samplers.py
  27. 23
      comfy/sd.py
  28. 56
      comfy/supported_models.py
  29. 5
      comfy/taesd/taesd.py
  30. 21
      comfy_extras/nodes_custom_sampler.py
  31. 16
      comfy_extras/nodes_hypertile.py
  32. 4
      comfy_extras/nodes_images.py
  33. 25
      comfy_extras/nodes_latent.py
  34. 3
      comfy_extras/nodes_mask.py
  35. 48
      comfy_extras/nodes_model_advanced.py
  36. 55
      comfy_extras/nodes_perpneg.py
  37. 30
      comfy_extras/nodes_rebatch.py
  38. 12
      comfy_extras/nodes_sag.py
  39. 47
      comfy_extras/nodes_sdupscale.py
  40. 102
      comfy_extras/nodes_stable3d.py
  41. 80
      execution.py
  42. 4
      folder_paths.py
  43. 25
      main.py
  44. 93
      nodes.py
  45. 2
      requirements.txt
  46. 20
      server.py
  47. 9
      tests-ui/afterSetup.js
  48. 3
      tests-ui/babel.config.json
  49. 2
      tests-ui/jest.config.js
  50. 20
      tests-ui/package-lock.json
  51. 1
      tests-ui/package.json
  52. 32
      tests-ui/tests/groupNode.test.js
  53. 295
      tests-ui/tests/users.test.js
  54. 16
      tests-ui/utils/index.js
  55. 36
      tests-ui/utils/setup.js
  56. 9
      web/extensions/core/groupNode.js
  57. 62
      web/extensions/core/nodeTemplates.js
  58. 30
      web/index.html
  59. 45
      web/lib/litegraph.core.js
  60. 100
      web/scripts/api.js
  61. 101
      web/scripts/app.js
  62. 1
      web/scripts/domWidget.js
  63. 269
      web/scripts/ui.js
  64. 32
      web/scripts/ui/dialog.js
  65. 307
      web/scripts/ui/settings.js
  66. 34
      web/scripts/ui/spinner.css
  67. 9
      web/scripts/ui/spinner.js
  68. 135
      web/scripts/ui/userSelection.css
  69. 114
      web/scripts/ui/userSelection.js
  70. 21
      web/scripts/utils.js
  71. 2
      web/style.css

2
.github/workflows/test-ui.yaml

@ -22,5 +22,5 @@ jobs:
run: |
npm ci
npm run test:generate
npm test
npm test -- --verbose
working-directory: ./tests-ui

1
.gitignore vendored

@ -15,3 +15,4 @@ venv/
!/web/extensions/logging.js.example
!/web/extensions/core/
/tests-ui/data/object_info.json
/user/

9
.vscode/settings.json vendored

@ -1,9 +0,0 @@
{
"path-intellisense.mappings": {
"../": "${workspaceFolder}/web/extensions/core"
},
"[python]": {
"editor.defaultFormatter": "ms-python.autopep8"
},
"python.formatting.provider": "none"
}

54
app/app_settings.py

@ -0,0 +1,54 @@
import os
import json
from aiohttp import web
class AppSettings():
def __init__(self, user_manager):
self.user_manager = user_manager
def get_settings(self, request):
file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json")
if os.path.isfile(file):
with open(file) as f:
return json.load(f)
else:
return {}
def save_settings(self, request, settings):
file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json")
with open(file, "w") as f:
f.write(json.dumps(settings, indent=4))
def add_routes(self, routes):
@routes.get("/settings")
async def get_settings(request):
return web.json_response(self.get_settings(request))
@routes.get("/settings/{id}")
async def get_setting(request):
value = None
settings = self.get_settings(request)
setting_id = request.match_info.get("id", None)
if setting_id and setting_id in settings:
value = settings[setting_id]
return web.json_response(value)
@routes.post("/settings")
async def post_settings(request):
settings = self.get_settings(request)
new_settings = await request.json()
self.save_settings(request, {**settings, **new_settings})
return web.Response(status=200)
@routes.post("/settings/{id}")
async def post_setting(request):
setting_id = request.match_info.get("id", None)
if not setting_id:
return web.Response(status=400)
settings = self.get_settings(request)
settings[setting_id] = await request.json()
self.save_settings(request, settings)
return web.Response(status=200)

140
app/user_manager.py

@ -0,0 +1,140 @@
import json
import os
import re
import uuid
from aiohttp import web
from comfy.cli_args import args
from folder_paths import user_directory
from .app_settings import AppSettings
default_user = "default"
users_file = os.path.join(user_directory, "users.json")
class UserManager():
def __init__(self):
global user_directory
self.settings = AppSettings(self)
if not os.path.exists(user_directory):
os.mkdir(user_directory)
if not args.multi_user:
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
if args.multi_user:
if os.path.isfile(users_file):
with open(users_file) as f:
self.users = json.load(f)
else:
self.users = {}
else:
self.users = {"default": "default"}
def get_request_user_id(self, request):
user = "default"
if args.multi_user and "comfy-user" in request.headers:
user = request.headers["comfy-user"]
if user not in self.users:
raise KeyError("Unknown user: " + user)
return user
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
global user_directory
if type == "userdata":
root_dir = user_directory
else:
raise KeyError("Unknown filepath type:" + type)
user = self.get_request_user_id(request)
path = user_root = os.path.abspath(os.path.join(root_dir, user))
# prevent leaving /{type}
if os.path.commonpath((root_dir, user_root)) != root_dir:
return None
parent = user_root
if file is not None:
# prevent leaving /{type}/{user}
path = os.path.abspath(os.path.join(user_root, file))
if os.path.commonpath((user_root, path)) != user_root:
return None
if create_dir and not os.path.exists(parent):
os.mkdir(parent)
return path
def add_user(self, name):
name = name.strip()
if not name:
raise ValueError("username not provided")
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
user_id = user_id + "_" + str(uuid.uuid4())
self.users[user_id] = name
global users_file
with open(users_file, "w") as f:
json.dump(self.users, f)
return user_id
def add_routes(self, routes):
self.settings.add_routes(routes)
@routes.get("/users")
async def get_users(request):
if args.multi_user:
return web.json_response({"storage": "server", "users": self.users})
else:
user_dir = self.get_request_user_filepath(request, None, create_dir=False)
return web.json_response({
"storage": "server",
"migrated": os.path.exists(user_dir)
})
@routes.post("/users")
async def post_users(request):
body = await request.json()
username = body["username"]
if username in self.users.values():
return web.json_response({"error": "Duplicate username."}, status=400)
user_id = self.add_user(username)
return web.json_response(user_id)
@routes.get("/userdata/{file}")
async def getuserdata(request):
file = request.match_info.get("file", None)
if not file:
return web.Response(status=400)
path = self.get_request_user_filepath(request, file)
if not path:
return web.Response(status=403)
if not os.path.exists(path):
return web.Response(status=404)
return web.FileResponse(path)
@routes.post("/userdata/{file}")
async def post_userdata(request):
file = request.match_info.get("file", None)
if not file:
return web.Response(status=400)
path = self.get_request_user_filepath(request, file)
if not path:
return web.Response(status=403)
body = await request.read()
with open(path, "wb") as f:
f.write(body)
return web.Response(status=200)

6
comfy/cli_args.py

@ -66,6 +66,8 @@ fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
fpte_group = parser.add_mutually_exclusive_group()
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
@ -102,7 +104,7 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
@ -110,6 +112,8 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
if comfy.options.args_parsing:
args = parser.parse_args()
else:

4
comfy/clip_model.py

@ -57,7 +57,7 @@ class CLIPEncoder(torch.nn.Module):
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None)
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
@ -151,7 +151,7 @@ class CLIPVisionEmbeddings(torch.nn.Module):
def forward(self, pixel_values):
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
return torch.cat([self.class_embedding.expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight
return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
class CLIPVision(torch.nn.Module):

23
comfy/clip_vision.py

@ -19,8 +19,10 @@ class Output:
def clip_preprocess(image, size=224):
mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
scale = (size / min(image.shape[1], image.shape[2]))
image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
scale = (size / min(image.shape[2], image.shape[3]))
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
@ -34,11 +36,9 @@ class ClipVisionModel():
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = torch.float32
if comfy.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
self.dtype = torch.float16
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.disable_weight_init)
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
@ -46,14 +46,7 @@ class ClipVisionModel():
def encode_image(self, image):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device))
if self.dtype != torch.float32:
precision_scope = torch.autocast
else:
precision_scope = lambda a, b: contextlib.nullcontext(a)
with precision_scope(comfy.model_management.get_autocast_device(self.load_device), torch.float32):
pixel_values = clip_preprocess(image.to(self.load_device)).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
outputs = Output()

5
comfy/controlnet.py

@ -125,6 +125,9 @@ class ControlBase:
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
if o[i].shape[0] < prev_val.shape[0]:
o[i] = prev_val + o[i]
else:
o[i] += prev_val
return out
@ -283,7 +286,7 @@ class ControlLora(ControlNet):
cm = self.control_model.state_dict()
for k in sd:
weight = comfy.model_management.resolve_lowvram_weight(sd[k], diffusion_model, k)
weight = sd[k]
try:
comfy.utils.set_attr(self.control_model, k, weight)
except:

4
comfy/latent_formats.py

@ -33,3 +33,7 @@ class SDXL(LatentFormat):
[-0.3112, -0.2359, -0.2076]
]
self.taesd_decoder_name = "taesdxl_decoder"
class SD_X4(LatentFormat):
def __init__(self):
self.scale_factor = 0.08333

5
comfy/ldm/models/autoencoder.py

@ -8,6 +8,7 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri
from comfy.ldm.util import instantiate_from_config
from comfy.ldm.modules.ema import LitEma
import comfy.ops
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = True):
@ -161,12 +162,12 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
},
**kwargs,
)
self.quant_conv = torch.nn.Conv2d(
self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
(1 + ddconfig["double_z"]) * embed_dim,
1,
)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
def get_autoencoder_params(self) -> list:

36
comfy/ldm/modules/attention.py

@ -104,9 +104,7 @@ def attention_basic(q, k, v, heads, mask=None):
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
q, k = q.float(), k.float()
sim = einsum('b i d, b j d -> b i j', q, k) * scale
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * scale
@ -179,6 +177,7 @@ def attention_sub_quad(query, key, value, heads, mask=None):
kv_chunk_size_min=kv_chunk_size_min,
use_checkpoint=False,
upcast_attention=upcast_attention,
mask=mask,
)
hidden_states = hidden_states.to(dtype)
@ -241,6 +240,12 @@ def attention_split(q, k, v, heads, mask=None):
else:
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
if mask is not None:
if len(mask.shape) == 2:
s1 += mask[i:end]
else:
s1 += mask[:, i:end]
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
first_op_done = True
@ -296,11 +301,14 @@ def attention_xformers(q, k, v, heads, mask=None):
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
if mask is not None:
pad = 8 - q.shape[1] % 8
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
mask_out[:, :, :mask.shape[-1]] = mask
mask = mask_out[:, :, :mask.shape[-1]]
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
@ -325,7 +333,6 @@ def attention_pytorch(q, k, v, heads, mask=None):
optimized_attention = attention_basic
optimized_attention_masked = attention_basic
if model_management.xformers_enabled():
print("Using xformers cross attention")
@ -341,15 +348,18 @@ else:
print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
optimized_attention = attention_sub_quad
if model_management.pytorch_attention_enabled():
optimized_attention_masked = attention_pytorch
optimized_attention_masked = optimized_attention
def optimized_attention_for_device(device, mask=False):
if device == torch.device("cpu"): #TODO
def optimized_attention_for_device(device, mask=False, small_input=False):
if small_input:
if model_management.pytorch_attention_enabled():
return attention_pytorch
return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
else:
return attention_basic
if device == torch.device("cpu"):
return attention_sub_quad
if mask:
return optimized_attention_masked

2
comfy/ldm/modules/diffusionmodules/model.py

@ -41,7 +41,7 @@ def nonlinearity(x):
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):

6
comfy/ldm/modules/diffusionmodules/openaimodel.py

@ -437,9 +437,6 @@ class UNetModel(nn.Module):
operations=ops,
):
super().__init__()
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
@ -456,7 +453,6 @@ class UNetModel(nn.Module):
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
@ -502,7 +498,7 @@ class UNetModel(nn.Module):
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)

16
comfy/ldm/modules/diffusionmodules/upscaling.py

@ -41,10 +41,14 @@ class AbstractLowScaleModel(nn.Module):
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
def q_sample(self, x_start, t, noise=None, seed=None):
if noise is None:
if seed is None:
noise = torch.randn_like(x_start)
else:
noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
def forward(self, x):
return x, None
@ -69,12 +73,12 @@ class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
super().__init__(noise_schedule_config=noise_schedule_config)
self.max_noise_level = max_noise_level
def forward(self, x, noise_level=None):
def forward(self, x, noise_level=None, seed=None):
if noise_level is None:
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
else:
assert isinstance(noise_level, torch.Tensor)
z = self.q_sample(x, noise_level)
z = self.q_sample(x, noise_level, seed=seed)
return z, noise_level

6
comfy/ldm/modules/diffusionmodules/util.py

@ -51,9 +51,9 @@ class AlphaBlender(nn.Module):
if self.merge_strategy == "fixed":
# make shape compatible
# alpha = repeat(self.mix_factor, '1 -> b () t () ()', t=t, b=bs)
alpha = self.mix_factor
alpha = self.mix_factor.to(image_only_indicator.device)
elif self.merge_strategy == "learned":
alpha = torch.sigmoid(self.mix_factor)
alpha = torch.sigmoid(self.mix_factor.to(image_only_indicator.device))
# make shape compatible
# alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
elif self.merge_strategy == "learned_with_images":
@ -61,7 +61,7 @@ class AlphaBlender(nn.Module):
alpha = torch.where(
image_only_indicator.bool(),
torch.ones(1, 1, device=image_only_indicator.device),
rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1"),
rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"),
)
alpha = rearrange(alpha, self.rearrange_pattern)
# make shape compatible

4
comfy/ldm/modules/encoders/noise_aug_modules.py

@ -15,12 +15,12 @@ class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
def scale(self, x):
# re-normalize to centered mean and unit variance
x = (x - self.data_mean) * 1. / self.data_std
x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
return x
def unscale(self, x):
# back to original data stats
x = (x * self.data_std) + self.data_mean
x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
return x
def forward(self, x, noise_level=None):

28
comfy/ldm/modules/sub_quadratic_attention.py

@ -61,6 +61,7 @@ def _summarize_chunk(
value: Tensor,
scale: float,
upcast_attention: bool,
mask,
) -> AttnChunk:
if upcast_attention:
with torch.autocast(enabled=False, device_type = 'cuda'):
@ -84,6 +85,8 @@ def _summarize_chunk(
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach()
attn_weights -= max_score
if mask is not None:
attn_weights += mask
torch.exp(attn_weights, out=attn_weights)
exp_weights = attn_weights.to(value.dtype)
exp_values = torch.bmm(exp_weights, value)
@ -96,11 +99,12 @@ def _query_chunk_attention(
value: Tensor,
summarize_chunk: SummarizeChunk,
kv_chunk_size: int,
mask,
) -> Tensor:
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
_, _, v_channels_per_head = value.shape
def chunk_scanner(chunk_idx: int) -> AttnChunk:
def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
key_chunk = dynamic_slice(
key_t,
(0, 0, chunk_idx),
@ -111,10 +115,13 @@ def _query_chunk_attention(
(0, chunk_idx, 0),
(batch_x_heads, kv_chunk_size, v_channels_per_head)
)
return summarize_chunk(query, key_chunk, value_chunk)
if mask is not None:
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
chunks: List[AttnChunk] = [
chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
]
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
chunk_values, chunk_weights, chunk_max = acc_chunk
@ -135,6 +142,7 @@ def _get_attention_scores_no_kv_chunking(
value: Tensor,
scale: float,
upcast_attention: bool,
mask,
) -> Tensor:
if upcast_attention:
with torch.autocast(enabled=False, device_type = 'cuda'):
@ -156,6 +164,8 @@ def _get_attention_scores_no_kv_chunking(
beta=0,
)
if mask is not None:
attn_scores += mask
try:
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
@ -183,6 +193,7 @@ def efficient_dot_product_attention(
kv_chunk_size_min: Optional[int] = None,
use_checkpoint=True,
upcast_attention=False,
mask = None,
):
"""Computes efficient dot-product attention given query, transposed key, and value.
This is efficient version of attention presented in
@ -209,6 +220,9 @@ def efficient_dot_product_attention(
if kv_chunk_size_min is not None:
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
if mask is not None and len(mask.shape) == 2:
mask = mask.unsqueeze(0)
def get_query_chunk(chunk_idx: int) -> Tensor:
return dynamic_slice(
query,
@ -216,6 +230,12 @@ def efficient_dot_product_attention(
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
)
def get_mask_chunk(chunk_idx: int) -> Tensor:
if mask is None:
return None
chunk = min(query_chunk_size, q_tokens)
return mask[:,chunk_idx:chunk_idx + chunk]
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
@ -237,6 +257,7 @@ def efficient_dot_product_attention(
query=query,
key_t=key_t,
value=value,
mask=mask,
)
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
@ -246,6 +267,7 @@ def efficient_dot_product_attention(
query=get_query_chunk(i * query_chunk_size),
key_t=key_t,
value=value,
mask=get_mask_chunk(i * query_chunk_size)
) for i in range(math.ceil(q_tokens / query_chunk_size))
], dim=1)
return res

8
comfy/ldm/modules/temporal_ae.py

@ -82,14 +82,14 @@ class VideoResBlock(ResnetBlock):
x = self.time_stack(x, temb)
alpha = self.get_alpha(bs=b // timesteps)
alpha = self.get_alpha(bs=b // timesteps).to(x.device)
x = alpha * x + (1.0 - alpha) * x_mix
x = rearrange(x, "b c t h w -> (b t) c h w")
return x
class AE3DConv(torch.nn.Conv2d):
class AE3DConv(ops.Conv2d):
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
super().__init__(in_channels, out_channels, *args, **kwargs)
if isinstance(video_kernel_size, Iterable):
@ -97,7 +97,7 @@ class AE3DConv(torch.nn.Conv2d):
else:
padding = int(video_kernel_size // 2)
self.time_mix_conv = torch.nn.Conv3d(
self.time_mix_conv = ops.Conv3d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=video_kernel_size,
@ -167,7 +167,7 @@ class AttnVideoBlock(AttnBlock):
emb = emb[:, None, :]
x_mix = x_mix + emb
alpha = self.get_alpha()
alpha = self.get_alpha().to(x.device)
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge

111
comfy/model_base.py

@ -1,7 +1,7 @@
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
import comfy.model_management
import comfy.conds
import comfy.ops
@ -78,7 +78,8 @@ class BaseModel(torch.nn.Module):
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "to"):
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra_conds[o] = extra
@ -99,11 +100,29 @@ class BaseModel(torch.nn.Module):
if self.inpaint_model:
concat_keys = ("mask", "masked_image")
cond_concat = []
denoise_mask = kwargs.get("denoise_mask", None)
latent_image = kwargs.get("latent_image", None)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
concat_latent_image = kwargs.get("concat_latent_image", None)
if concat_latent_image is None:
concat_latent_image = kwargs.get("latent_image", None)
else:
concat_latent_image = self.process_latent_in(concat_latent_image)
noise = kwargs.get("noise", None)
device = kwargs["device"]
if concat_latent_image.shape[1:] != noise.shape[1:]:
concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
if len(denoise_mask.shape) == len(noise.shape):
denoise_mask = denoise_mask[:,:1]
denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
if denoise_mask.shape[-2:] != noise.shape[-2:]:
denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
def blank_inpaint_image_like(latent_image):
blank_image = torch.ones_like(latent_image)
# these are the values for "zero" in pixel space translated to latent space
@ -116,9 +135,9 @@ class BaseModel(torch.nn.Module):
for ck in concat_keys:
if denoise_mask is not None:
if ck == "mask":
cond_concat.append(denoise_mask[:,:1].to(device))
cond_concat.append(denoise_mask.to(device))
elif ck == "masked_image":
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
else:
if ck == "mask":
cond_concat.append(torch.ones_like(noise)[:,:1])
@ -126,9 +145,15 @@ class BaseModel(torch.nn.Module):
cond_concat.append(blank_inpaint_image_like(noise))
data = torch.cat(cond_concat, dim=1)
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
def load_model_weights(self, sd, unet_prefix=""):
@ -156,11 +181,7 @@ class BaseModel(torch.nn.Module):
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
unet_sd = self.diffusion_model.state_dict()
unet_state_dict = {}
for k in unet_sd:
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
if self.get_dtype() == torch.float16:
@ -322,9 +343,75 @@ class SVD_img2vid(BaseModel):
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
if "time_conditioning" in kwargs:
out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
return out
class Stable_Zero123(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
super().__init__(model_config, model_type, device=device)
self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
self.cc_projection.weight.copy_(cc_projection_weight)
self.cc_projection.bias.copy_(cc_projection_bias)
def extra_conds(self, **kwargs):
out = {}
latent_image = kwargs.get("concat_latent_image", None)
noise = kwargs.get("noise", None)
if latent_image is None:
latent_image = torch.zeros_like(noise)
if latent_image.shape[1:] != noise.shape[1:]:
latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
if cross_attn.shape[-1] != 768:
cross_attn = self.cc_projection(cross_attn)
out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
return out
class SD_X4Upscaler(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
super().__init__(model_config, model_type, device=device)
self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
def extra_conds(self, **kwargs):
out = {}
image = kwargs.get("concat_image", None)
noise = kwargs.get("noise", None)
noise_augment = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
seed = kwargs["seed"] - 10
noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
if image is None:
image = torch.zeros_like(noise)[:,:3]
if image.shape[1:] != noise.shape[1:]:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
noise_level = torch.tensor([noise_level], device=device)
if noise_augment > 0:
image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
image = utils.resize_to_batch_size(image, noise.shape[0])
out['c_concat'] = comfy.conds.CONDNoiseShape(image)
out['y'] = comfy.conds.CONDRegular(noise_level)
return out

8
comfy/model_detection.py

@ -34,7 +34,6 @@ def detect_unet_config(state_dict, key_prefix, dtype):
unet_config = {
"use_checkpoint": False,
"image_size": 32,
"out_channels": 4,
"use_spatial_transformer": True,
"legacy": False
}
@ -50,6 +49,12 @@ def detect_unet_config(state_dict, key_prefix, dtype):
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
out_key = '{}out.2.weight'.format(key_prefix)
if out_key in state_dict:
out_channels = state_dict[out_key].shape[0]
else:
out_channels = 4
num_res_blocks = []
channel_mult = []
attention_resolutions = []
@ -122,6 +127,7 @@ def detect_unet_config(state_dict, key_prefix, dtype):
transformer_depth_middle = -1
unet_config["in_channels"] = in_channels
unet_config["out_channels"] = out_channels
unet_config["model_channels"] = model_channels
unet_config["num_res_blocks"] = num_res_blocks
unet_config["transformer_depth"] = transformer_depth

69
comfy/model_management.py

@ -28,6 +28,10 @@ total_vram = 0
lowvram_available = True
xpu_available = False
if args.deterministic:
print("Using deterministic algorithms for pytorch")
torch.use_deterministic_algorithms(True, warn_only=True)
directml_enabled = False
if args.directml is not None:
import torch_directml
@ -182,6 +186,9 @@ except:
if is_intel_xpu():
VAE_DTYPE = torch.bfloat16
if args.cpu_vae:
VAE_DTYPE = torch.float32
if args.fp16_vae:
VAE_DTYPE = torch.float16
elif args.bf16_vae:
@ -214,15 +221,8 @@ if args.force_fp16:
FORCE_FP16 = True
if lowvram_available:
try:
import accelerate
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
except Exception as e:
import traceback
print(traceback.format_exc())
print("ERROR: LOW VRAM MODE NEEDS accelerate.")
lowvram_available = False
if cpu_state != CPUState.GPU:
@ -262,6 +262,14 @@ print("VAE dtype:", VAE_DTYPE)
current_loaded_models = []
def module_size(module):
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
def __init__(self, model):
self.model = model
@ -294,8 +302,20 @@ class LoadedModel:
if lowvram_model_memory > 0:
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
mem_counter = 0
for m in self.real_model.modules():
if hasattr(m, "comfy_cast_weights"):
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
module_mem = module_size(m)
if mem_counter + module_mem < lowvram_model_memory:
m.to(self.device)
mem_counter += module_mem
elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
m.to(self.device)
mem_counter += module_size(m)
print("lowvram: loaded module regularly", m)
self.model_accelerated = True
if is_intel_xpu() and not args.disable_ipex_optimize:
@ -305,7 +325,11 @@ class LoadedModel:
def model_unload(self):
if self.model_accelerated:
accelerate.hooks.remove_hook_from_submodules(self.real_model)
for m in self.real_model.modules():
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
self.model_accelerated = False
self.model.unpatch_model(self.model.offload_device)
@ -398,14 +422,14 @@ def load_models_gpu(models, memory_required=0):
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 256 * 1024 * 1024
lowvram_model_memory = 64 * 1024 * 1024
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
current_loaded_models.insert(0, loaded_model)
@ -534,6 +558,8 @@ def intermediate_device():
return torch.device("cpu")
def vae_device():
if args.cpu_vae:
return torch.device("cpu")
return get_torch_device()
def vae_offload_device():
@ -562,6 +588,11 @@ def supports_dtype(device, dtype): #TODO
return True
return False
def device_supports_non_blocking(device):
if is_device_mps(device):
return False #pytorch bug? mps doesn't support non blocking
return True
def cast_to_device(tensor, device, dtype, copy=False):
device_supports_cast = False
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
@ -572,9 +603,7 @@ def cast_to_device(tensor, device, dtype, copy=False):
elif is_intel_xpu():
device_supports_cast = True
non_blocking = True
if is_device_mps(device):
non_blocking = False #pytorch bug? mps doesn't support non blocking
non_blocking = device_supports_non_blocking(device)
if device_supports_cast:
if copy:
@ -738,11 +767,11 @@ def soft_empty_cache(force=False):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def resolve_lowvram_weight(weight, model, key):
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break.
key_split = key.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device.
op = comfy.utils.get_attr(model, '.'.join(key_split[:-1]))
weight = op._hf_hook.weights_map[key_split[-1]]
def unload_all_models():
free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight, model, key): #TODO: remove
return weight
#TODO: might be cleaner to put this somewhere else

19
comfy/model_patcher.py

@ -28,13 +28,9 @@ class ModelPatcher:
if self.size > 0:
return self.size
model_sd = self.model.state_dict()
size = 0
for k in model_sd:
t = model_sd[k]
size += t.nelement() * t.element_size()
self.size = size
self.size = comfy.model_management.module_size(self.model)
self.model_keys = set(model_sd.keys())
return size
return self.size
def clone(self):
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
@ -55,14 +51,18 @@ class ModelPatcher:
def memory_required(self, input_shape):
return self.model.memory_required(input_shape=input_shape)
def set_model_sampler_cfg_function(self, sampler_cfg_function):
def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
if len(inspect.signature(sampler_cfg_function).parameters) == 3:
self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
else:
self.model_options["sampler_cfg_function"] = sampler_cfg_function
if disable_cfg1_optimization:
self.model_options["disable_cfg1_optimization"] = True
def set_model_sampler_post_cfg_function(self, post_cfg_function):
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
if disable_cfg1_optimization:
self.model_options["disable_cfg1_optimization"] = True
def set_model_unet_function_wrapper(self, unet_wrapper_function):
self.model_options["model_function_wrapper"] = unet_wrapper_function
@ -174,13 +174,14 @@ class ModelPatcher:
sd.pop(k)
return sd
def patch_model(self, device_to=None):
def patch_model(self, device_to=None, patch_weights=True):
for k in self.object_patches:
old = getattr(self.model, k)
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
setattr(self.model, k, self.object_patches[k])
if patch_weights:
model_sd = self.model_state_dict()
for key in self.patches:
if key not in model_sd:

92
comfy/ops.py

@ -1,27 +1,93 @@
import torch
from contextlib import contextmanager
import comfy.model_management
def cast_bias_weight(s, input):
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
return weight, bias
class disable_weight_init:
class Linear(torch.nn.Linear):
comfy_cast_weights = False
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv2d(torch.nn.Conv2d):
comfy_cast_weights = False
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class Conv3d(torch.nn.Conv3d):
comfy_cast_weights = False
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class GroupNorm(torch.nn.GroupNorm):
comfy_cast_weights = False
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class LayerNorm(torch.nn.LayerNorm):
comfy_cast_weights = False
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@classmethod
def conv_nd(s, dims, *args, **kwargs):
if dims == 2:
@ -31,35 +97,19 @@ class disable_weight_init:
else:
raise ValueError(f"unsupported dimensions: {dims}")
def cast_bias_weight(s, input):
bias = None
if s.bias is not None:
bias = s.bias.to(device=input.device, dtype=input.dtype)
weight = s.weight.to(device=input.device, dtype=input.dtype)
return weight, bias
class manual_cast(disable_weight_init):
class Linear(disable_weight_init.Linear):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
comfy_cast_weights = True
class Conv2d(disable_weight_init.Conv2d):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
comfy_cast_weights = True
class Conv3d(disable_weight_init.Conv3d):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return self._conv_forward(input, weight, bias)
comfy_cast_weights = True
class GroupNorm(disable_weight_init.GroupNorm):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
comfy_cast_weights = True
class LayerNorm(disable_weight_init.LayerNorm):
def forward(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
comfy_cast_weights = True

4
comfy/sample.py

@ -28,7 +28,6 @@ def prepare_noise(latent_image, seed, noise_inds=None):
def prepare_mask(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""
noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
noise_mask = noise_mask.to(device)
@ -47,7 +46,8 @@ def convert_cond(cond):
temp = c[1].copy()
model_conds = temp.get("model_conds", {})
if c[0] is not None:
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0])
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
temp["cross_attn"] = c[0]
temp["model_conds"] = model_conds
out.append(temp)
return out

19
comfy/samplers.py

@ -244,14 +244,15 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
#The main sampling function shared by all the samplers
#Returns denoised
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
if math.isclose(cond_scale, 1.0):
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
else:
uncond_ = uncond
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep}
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
cfg_result = x - model_options["sampler_cfg_function"](args)
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
@ -598,6 +599,13 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
calculate_start_end_timesteps(model, negative)
calculate_start_end_timesteps(model, positive)
if latent_image is not None:
latent_image = model.process_latent_in(latent_image)
if hasattr(model, 'extra_conds'):
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask, seed=seed)
#make sure each cond area has an opposite one with the same area
for c in positive:
create_cond_with_same_area_if_none(negative, c)
@ -609,13 +617,6 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if latent_image is not None:
latent_image = model.process_latent_in(latent_image)
if hasattr(model, 'extra_conds'):
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}
samples = sampler.sample(model_wrap, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)

23
comfy/sd.py

@ -157,6 +157,8 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) #These are for AutoencoderKL and need tweaking (should be lower)
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype)
self.downscale_ratio = 8
self.latent_channels = 4
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
@ -172,6 +174,11 @@ class VAE:
else:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
if 'encoder.down.2.downsample.conv.weight' not in sd: #Stable diffusion x4 upscaler VAE
ddconfig['ch_mult'] = [1, 2, 4]
self.downscale_ratio = 4
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
else:
self.first_stage_model = AutoencoderKL(**(config['params']))
@ -204,9 +211,9 @@ class VAE:
decode_fn = lambda a: (self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)) + 1.0).float()
output = torch.clamp((
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = 8, output_device=self.output_device, pbar = pbar))
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar) +
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.downscale_ratio, output_device=self.output_device, pbar = pbar))
/ 3.0) / 2.0, min=0.0, max=1.0)
return output
@ -217,9 +224,9 @@ class VAE:
pbar = comfy.utils.ProgressBar(steps)
encode_fn = lambda a: self.first_stage_model.encode((2. * a - 1.).to(self.vae_dtype).to(self.device)).float()
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/8), out_channels=4, output_device=self.output_device, pbar=pbar)
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar)
samples /= 3.0
return samples
@ -231,7 +238,7 @@ class VAE:
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * 8), round(samples_in.shape[3] * 8)), device=self.output_device)
pixel_samples = torch.empty((samples_in.shape[0], 3, round(samples_in.shape[2] * self.downscale_ratio), round(samples_in.shape[3] * self.downscale_ratio)), device=self.output_device)
for x in range(0, samples_in.shape[0], batch_number):
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device)
pixel_samples[x:x+batch_number] = torch.clamp((self.first_stage_model.decode(samples).to(self.output_device).float() + 1.0) / 2.0, min=0.0, max=1.0)
@ -255,7 +262,7 @@ class VAE:
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
samples = torch.empty((pixel_samples.shape[0], 4, round(pixel_samples.shape[2] // 8), round(pixel_samples.shape[3] // 8)), device=self.output_device)
samples = torch.empty((pixel_samples.shape[0], self.latent_channels, round(pixel_samples.shape[2] // self.downscale_ratio), round(pixel_samples.shape[3] // self.downscale_ratio)), device=self.output_device)
for x in range(0, pixel_samples.shape[0], batch_number):
pixels_in = (2. * pixel_samples[x:x+batch_number] - 1.).to(self.vae_dtype).to(self.device)
samples[x:x+batch_number] = self.first_stage_model.encode(pixels_in).to(self.output_device).float()

56
comfy/supported_models.py

@ -252,5 +252,59 @@ class SVD_img2vid(supported_models_base.BASE):
def clip_target(self):
return None
models = [SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, Segmind_Vega]
class Stable_Zero123(supported_models_base.BASE):
unet_config = {
"context_dim": 768,
"model_channels": 320,
"use_linear_in_transformer": False,
"adm_in_channels": None,
"use_temporal_attention": False,
"in_channels": 8,
}
unet_extra_config = {
"num_heads": 8,
"num_head_channels": -1,
}
clip_vision_prefix = "cond_stage_model.model.visual."
latent_format = latent_formats.SD15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Stable_Zero123(self, device=device, cc_projection_weight=state_dict["cc_projection.weight"], cc_projection_bias=state_dict["cc_projection.bias"])
return out
def clip_target(self):
return None
class SD_X4Upscaler(SD20):
unet_config = {
"context_dim": 1024,
"model_channels": 256,
'in_channels': 7,
"use_linear_in_transformer": True,
"adm_in_channels": None,
"use_temporal_attention": False,
}
unet_extra_config = {
"disable_self_attentions": [True, True, True, False],
"num_classes": 1000,
"num_heads": 8,
"num_head_channels": -1,
}
latent_format = latent_formats.SD_X4
sampling_settings = {
"linear_start": 0.0001,
"linear_end": 0.02,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SD_X4Upscaler(self, device=device)
return out
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, Segmind_Vega, SD_X4Upscaler]
models += [SVD_img2vid]

5
comfy/taesd/taesd.py

@ -7,9 +7,10 @@ import torch
import torch.nn as nn
import comfy.utils
import comfy.ops
def conv(n_in, n_out, **kwargs):
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
return comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
@ -19,7 +20,7 @@ class Block(nn.Module):
def __init__(self, n_in, n_out):
super().__init__()
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.skip = comfy.ops.disable_weight_init.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.fuse = nn.ReLU()
def forward(self, x):
return self.fuse(self.conv(x) + self.skip(x))

21
comfy_extras/nodes_custom_sampler.py

@ -13,6 +13,7 @@ class BasicScheduler:
{"model": ("MODEL",),
"scheduler": (comfy.samplers.SCHEDULER_NAMES, ),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
@ -20,8 +21,14 @@ class BasicScheduler:
FUNCTION = "get_sigmas"
def get_sigmas(self, model, scheduler, steps):
sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, steps).cpu()
def get_sigmas(self, model, scheduler, steps, denoise):
total_steps = steps
if denoise < 1.0:
total_steps = int(steps/denoise)
comfy.model_management.load_models_gpu([model])
sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu()
sigmas = sigmas[-(steps + 1):]
return (sigmas, )
@ -87,6 +94,7 @@ class SDTurboScheduler:
return {"required":
{"model": ("MODEL",),
"steps": ("INT", {"default": 1, "min": 1, "max": 10}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("SIGMAS",)
@ -94,9 +102,12 @@ class SDTurboScheduler:
FUNCTION = "get_sigmas"
def get_sigmas(self, model, steps):
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[:steps]
sigmas = model.model.model_sampling.sigma(timesteps)
def get_sigmas(self, model, steps, denoise):
start_step = 10 - int(10 * denoise)
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
inner_model = model.patch_model(patch_weights=False)
sigmas = inner_model.model_sampling.sigma(timesteps)
model.unpatch_model()
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
return (sigmas, )

16
comfy_extras/nodes_hypertile.py

@ -37,24 +37,24 @@ class HyperTile:
def patch(self, model, tile_size, swap_size, max_depth, scale_depth):
model_channels = model.model.model_config.unet_config["model_channels"]
apply_to = set()
temp = model_channels
for x in range(max_depth + 1):
apply_to.add(temp)
temp *= 2
latent_tile_size = max(32, tile_size) // 8
self.temp = None
def hypertile_in(q, k, v, extra_options):
if q.shape[-1] in apply_to:
model_chans = q.shape[-2]
orig_shape = extra_options['original_shape']
apply_to = []
for i in range(max_depth + 1):
apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i)))
if model_chans in apply_to:
shape = extra_options["original_shape"]
aspect_ratio = shape[-1] / shape[-2]
hw = q.size(1)
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))
factor = 2**((q.shape[-1] // model_channels) - 1) if scale_depth else 1
factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1
nh = random_divisor(h, latent_tile_size * factor, swap_size)
nw = random_divisor(w, latent_tile_size * factor, swap_size)

4
comfy_extras/nodes_images.py

@ -74,7 +74,7 @@ class SaveAnimatedWEBP:
OUTPUT_NODE = True
CATEGORY = "_for_testing"
CATEGORY = "image/animation"
def save_images(self, images, fps, filename_prefix, lossless, quality, method, num_frames=0, prompt=None, extra_pnginfo=None):
method = self.methods.get(method)
@ -136,7 +136,7 @@ class SaveAnimatedPNG:
OUTPUT_NODE = True
CATEGORY = "_for_testing"
CATEGORY = "image/animation"
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append

25
comfy_extras/nodes_latent.py

@ -3,9 +3,7 @@ import torch
def reshape_latent_to(target_shape, latent):
if latent.shape[1:] != target_shape[1:]:
latent.movedim(1, -1)
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
latent.movedim(-1, 1)
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
@ -102,9 +100,32 @@ class LatentInterpolate:
samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
return (samples_out,)
class LatentBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "batch"
CATEGORY = "latent/batch"
def batch(self, samples1, samples2):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
if s1.shape[1:] != s2.shape[1:]:
s2 = comfy.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
s = torch.cat((s1, s2), dim=0)
samples_out["samples"] = s
samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
return (samples_out,)
NODE_CLASS_MAPPINGS = {
"LatentAdd": LatentAdd,
"LatentSubtract": LatentSubtract,
"LatentMultiply": LatentMultiply,
"LatentInterpolate": LatentInterpolate,
"LatentBatch": LatentBatch,
}

3
comfy_extras/nodes_mask.py

@ -6,6 +6,7 @@ import comfy.utils
from nodes import MAX_RESOLUTION
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
source = source.to(destination.device)
if resize_source:
source = torch.nn.functional.interpolate(source, size=(destination.shape[2], destination.shape[3]), mode="bilinear")
@ -20,7 +21,7 @@ def composite(destination, source, x, y, mask = None, multiplier = 8, resize_sou
if mask is None:
mask = torch.ones_like(source)
else:
mask = mask.clone()
mask = mask.to(destination.device, copy=True)
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[2], source.shape[3]), mode="bilinear")
mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0])

48
comfy_extras/nodes_model_advanced.py

@ -17,41 +17,19 @@ class LCM(comfy.model_sampling.EPS):
return c_out * x0 + c_skip * model_input
class ModelSamplingDiscreteDistilled(torch.nn.Module):
class ModelSamplingDiscreteDistilled(comfy.model_sampling.ModelSamplingDiscrete):
original_timesteps = 50
def __init__(self):
super().__init__()
self.sigma_data = 1.0
timesteps = 1000
beta_start = 0.00085
beta_end = 0.012
def __init__(self, model_config=None):
super().__init__(model_config)
betas = torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype=torch.float32) ** 2
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
self.skip_steps = self.num_timesteps // self.original_timesteps
self.skip_steps = timesteps // self.original_timesteps
alphas_cumprod_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
sigmas_valid = torch.zeros((self.original_timesteps), dtype=torch.float32)
for x in range(self.original_timesteps):
alphas_cumprod_valid[self.original_timesteps - 1 - x] = alphas_cumprod[timesteps - 1 - x * self.skip_steps]
sigmas = ((1 - alphas_cumprod_valid) / alphas_cumprod_valid) ** 0.5
self.set_sigmas(sigmas)
sigmas_valid[self.original_timesteps - 1 - x] = self.sigmas[self.num_timesteps - 1 - x * self.skip_steps]
def set_sigmas(self, sigmas):
self.register_buffer('sigmas', sigmas)
self.register_buffer('log_sigmas', sigmas.log())
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
self.set_sigmas(sigmas_valid)
def timestep(self, sigma):
log_sigma = sigma.log()
@ -66,14 +44,6 @@ class ModelSamplingDiscreteDistilled(torch.nn.Module):
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
return log_sigma.exp().to(timestep.device)
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 999999999.9
if percent >= 1.0:
return 0.0
percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0)).item()
def rescale_zero_terminal_snr_sigmas(sigmas):
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
@ -122,7 +92,7 @@ class ModelSamplingDiscrete:
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced()
model_sampling = ModelSamplingAdvanced(model.model.model_config)
if zsnr:
model_sampling.set_sigmas(rescale_zero_terminal_snr_sigmas(model_sampling.sigmas))
@ -154,7 +124,7 @@ class ModelSamplingContinuousEDM:
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingContinuousEDM, sampling_type):
pass
model_sampling = ModelSamplingAdvanced()
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_sigma_range(sigma_min, sigma_max)
m.add_object_patch("model_sampling", model_sampling)
return (m, )

55
comfy_extras/nodes_perpneg.py

@ -0,0 +1,55 @@
import torch
import comfy.model_management
import comfy.sample
import comfy.samplers
import comfy.utils
class PerpNeg:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"empty_conditioning": ("CONDITIONING", ),
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "_for_testing"
def patch(self, model, empty_conditioning, neg_scale):
m = model.clone()
nocond = comfy.sample.convert_cond(empty_conditioning)
def cfg_function(args):
model = args["model"]
noise_pred_pos = args["cond_denoised"]
noise_pred_neg = args["uncond_denoised"]
cond_scale = args["cond_scale"]
x = args["input"]
sigma = args["sigma"]
model_options = args["model_options"]
nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")
(noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options)
pos = noise_pred_pos - noise_pred_nocond
neg = noise_pred_neg - noise_pred_nocond
perp = ((torch.mul(pos, neg).sum())/(torch.norm(neg)**2)) * neg
perp_neg = perp * neg_scale
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
cfg_result = x - cfg_result
return cfg_result
m.set_model_sampler_cfg_function(cfg_function)
return (m, )
NODE_CLASS_MAPPINGS = {
"PerpNeg": PerpNeg,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PerpNeg": "Perp-Neg",
}

30
comfy_extras/nodes_rebatch.py

@ -99,10 +99,40 @@ class LatentRebatch:
return (output_list,)
class ImageRebatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "images": ("IMAGE",),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
INPUT_IS_LIST = True
OUTPUT_IS_LIST = (True, )
FUNCTION = "rebatch"
CATEGORY = "image/batch"
def rebatch(self, images, batch_size):
batch_size = batch_size[0]
output_list = []
all_images = []
for img in images:
for i in range(img.shape[0]):
all_images.append(img[i:i+1])
for i in range(0, len(all_images), batch_size):
output_list.append(torch.cat(all_images[i:i+batch_size], dim=0))
return (output_list,)
NODE_CLASS_MAPPINGS = {
"RebatchLatents": LatentRebatch,
"RebatchImages": ImageRebatch,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"RebatchLatents": "Rebatch Latents",
"RebatchImages": "Rebatch Images",
}

12
comfy_extras/nodes_sag.py

@ -27,9 +27,7 @@ def attention_basic_with_sim(q, k, v, heads, mask=None):
# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
with torch.autocast(enabled=False, device_type = 'cuda'):
q, k = q.float(), k.float()
sim = einsum('b i d, b j d -> b i j', q, k) * scale
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
else:
sim = einsum('b i d, b j d -> b i j', q, k) * scale
@ -60,7 +58,7 @@ def create_blur_map(x0, attn, sigma=3.0, threshold=1.0):
attn = attn.reshape(b, -1, hw1, hw2)
# Global Average Pool
mask = attn.mean(1, keepdim=False).sum(1, keepdim=False) > threshold
ratio = round(math.sqrt(lh * lw / hw1))
ratio = 2**(math.ceil(math.sqrt(lh * lw / hw1)) - 1).bit_length()
mid_shape = [math.ceil(lh / ratio), math.ceil(lw / ratio)]
# Reshape
@ -111,7 +109,6 @@ class SelfAttentionGuidance:
m = model.clone()
attn_scores = None
mid_block_shape = None
# TODO: make this work properly with chunked batches
# currently, we can only save the attn from one UNet call
@ -134,7 +131,6 @@ class SelfAttentionGuidance:
def post_cfg_function(args):
nonlocal attn_scores
nonlocal mid_block_shape
uncond_attn = attn_scores
sag_scale = scale
@ -147,6 +143,8 @@ class SelfAttentionGuidance:
sigma = args["sigma"]
model_options = args["model_options"]
x = args["input"]
if min(cfg_result.shape[2:]) <= 4: #skip when too small to add padding
return cfg_result
# create the adversarially blurred image
degraded = create_blur_map(uncond_pred, uncond_attn, sag_sigma, sag_threshold)
@ -155,7 +153,7 @@ class SelfAttentionGuidance:
(sag, _) = comfy.samplers.calc_cond_uncond_batch(model, uncond, None, degraded_noised, sigma, model_options)
return cfg_result + (degraded - sag) * sag_scale
m.set_model_sampler_post_cfg_function(post_cfg_function)
m.set_model_sampler_post_cfg_function(post_cfg_function, disable_cfg1_optimization=True)
# from diffusers:
# unet.mid_block.attentions[0].transformer_blocks[0].attn1.patch

47
comfy_extras/nodes_sdupscale.py

@ -0,0 +1,47 @@
import torch
import nodes
import comfy.utils
class SD_4XUpscale_Conditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": { "images": ("IMAGE",),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"scale_ratio": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/upscale_diffusion"
def encode(self, images, positive, negative, scale_ratio, noise_augmentation):
width = max(1, round(images.shape[-2] * scale_ratio))
height = max(1, round(images.shape[-3] * scale_ratio))
pixels = comfy.utils.common_upscale((images.movedim(-1,1) * 2.0) - 1.0, width // 4, height // 4, "bilinear", "center")
out_cp = []
out_cn = []
for t in positive:
n = [t[0], t[1].copy()]
n[1]['concat_image'] = pixels
n[1]['noise_augmentation'] = noise_augmentation
out_cp.append(n)
for t in negative:
n = [t[0], t[1].copy()]
n[1]['concat_image'] = pixels
n[1]['noise_augmentation'] = noise_augmentation
out_cn.append(n)
latent = torch.zeros([images.shape[0], 4, height // 4, width // 4])
return (out_cp, out_cn, {"samples":latent})
NODE_CLASS_MAPPINGS = {
"SD_4XUpscale_Conditioning": SD_4XUpscale_Conditioning,
}

102
comfy_extras/nodes_stable3d.py

@ -0,0 +1,102 @@
import torch
import nodes
import comfy.utils
def camera_embeddings(elevation, azimuth):
elevation = torch.as_tensor([elevation])
azimuth = torch.as_tensor([azimuth])
embeddings = torch.stack(
[
torch.deg2rad(
(90 - elevation) - (90)
), # Zero123 polar is 90-elevation
torch.sin(torch.deg2rad(azimuth)),
torch.cos(torch.deg2rad(azimuth)),
torch.deg2rad(
90 - torch.full_like(elevation, 0)
),
], dim=-1).unsqueeze(1)
return embeddings
class StableZero123_Conditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/3d_models"
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
cam_embeds = camera_embeddings(elevation, azimuth)
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1)
positive = [[cond, {"concat_latent_image": t}]]
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (positive, negative, {"samples":latent})
class StableZero123_Conditioning_Batched:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/3d_models"
def encode(self, clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth, elevation_batch_increment, azimuth_batch_increment):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
cam_embeds = []
for i in range(batch_size):
cam_embeds.append(camera_embeddings(elevation, azimuth))
elevation += elevation_batch_increment
azimuth += azimuth_batch_increment
cam_embeds = torch.cat(cam_embeds, dim=0)
cond = torch.cat([comfy.utils.repeat_to_batch_size(pooled, batch_size), cam_embeds], dim=-1)
positive = [[cond, {"concat_latent_image": t}]]
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t)}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size})
NODE_CLASS_MAPPINGS = {
"StableZero123_Conditioning": StableZero123_Conditioning,
"StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched,
}

80
execution.py

@ -7,6 +7,7 @@ import threading
import heapq
import traceback
import gc
import inspect
import torch
import nodes
@ -267,11 +268,14 @@ def recursive_output_delete_if_changed(prompt, old_prompt, outputs, current_item
class PromptExecutor:
def __init__(self, server):
self.server = server
self.reset()
def reset(self):
self.outputs = {}
self.object_storage = {}
self.outputs_ui = {}
self.old_prompt = {}
self.server = server
def handle_execution_error(self, prompt_id, prompt, current_outputs, executed, error, ex):
node_id = error["node_id"]
@ -382,6 +386,8 @@ class PromptExecutor:
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
self.server.last_node_id = None
if comfy.model_management.DISABLE_SMART_MEMORY:
comfy.model_management.unload_all_models()
@ -400,6 +406,10 @@ def validate_inputs(prompt, item, validated):
errors = []
valid = True
validate_function_inputs = []
if hasattr(obj_class, "VALIDATE_INPUTS"):
validate_function_inputs = inspect.getfullargspec(obj_class.VALIDATE_INPUTS).args
for x in required_inputs:
if x not in inputs:
error = {
@ -529,29 +539,7 @@ def validate_inputs(prompt, item, validated):
errors.append(error)
continue
if hasattr(obj_class, "VALIDATE_INPUTS"):
input_data_all = get_input_data(inputs, obj_class, unique_id)
#ret = obj_class.VALIDATE_INPUTS(**input_data_all)
ret = map_node_over_list(obj_class, input_data_all, "VALIDATE_INPUTS")
for i, r in enumerate(ret):
if r is not True:
details = f"{x}"
if r is not False:
details += f" - {str(r)}"
error = {
"type": "custom_validation_failed",
"message": "Custom validation failed for node",
"details": details,
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
else:
if x not in validate_function_inputs:
if isinstance(type_input, list):
if val not in type_input:
input_config = info
@ -578,6 +566,35 @@ def validate_inputs(prompt, item, validated):
errors.append(error)
continue
if len(validate_function_inputs) > 0:
input_data_all = get_input_data(inputs, obj_class, unique_id)
input_filtered = {}
for x in input_data_all:
if x in validate_function_inputs:
input_filtered[x] = input_data_all[x]
#ret = obj_class.VALIDATE_INPUTS(**input_filtered)
ret = map_node_over_list(obj_class, input_filtered, "VALIDATE_INPUTS")
for x in input_filtered:
for i, r in enumerate(ret):
if r is not True:
details = f"{x}"
if r is not False:
details += f" - {str(r)}"
error = {
"type": "custom_validation_failed",
"message": "Custom validation failed for node",
"details": details,
"extra_info": {
"input_name": x,
"input_config": info,
"received_value": val,
}
}
errors.append(error)
continue
if len(errors) > 0 or valid is not True:
ret = (False, errors, unique_id)
else:
@ -692,6 +709,7 @@ class PromptQueue:
self.queue = []
self.currently_running = {}
self.history = {}
self.flags = {}
server.prompt_queue = self
def put(self, item):
@ -778,3 +796,17 @@ class PromptQueue:
def delete_history_item(self, id_to_delete):
with self.mutex:
self.history.pop(id_to_delete, None)
def set_flag(self, name, data):
with self.mutex:
self.flags[name] = data
self.not_empty.notify()
def get_flags(self, reset=True):
with self.mutex:
if reset:
ret = self.flags
self.flags = {}
return ret
else:
return self.flags.copy()

4
folder_paths.py

@ -34,6 +34,7 @@ folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers"
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp")
input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
user_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "user")
filename_list_cache = {}
@ -184,8 +185,7 @@ def cached_filename_list_(folder_name):
if folder_name not in filename_list_cache:
return None
out = filename_list_cache[folder_name]
if time.perf_counter() < (out[2] + 0.5):
return out
for x in out[1]:
time_modified = out[1][x]
folder = x

25
main.py

@ -64,6 +64,10 @@ if __name__ == "__main__":
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_device)
print("Set cuda device to:", args.cuda_device)
if args.deterministic:
if 'CUBLAS_WORKSPACE_CONFIG' not in os.environ:
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ":4096:8"
import cuda_malloc
import comfy.utils
@ -93,7 +97,7 @@ def prompt_worker(q, server):
gc_collect_interval = 10.0
while True:
timeout = None
timeout = 1000.0
if need_gc:
timeout = max(gc_collect_interval - (current_time - last_gc_collect), 0.0)
@ -102,6 +106,8 @@ def prompt_worker(q, server):
item, item_id = queue_item
execution_start_time = time.perf_counter()
prompt_id = item[1]
server.last_prompt_id = prompt_id
e.execute(item[2], prompt_id, item[3], item[4])
need_gc = True
q.task_done(item_id, e.outputs_ui)
@ -112,6 +118,19 @@ def prompt_worker(q, server):
execution_time = current_time - execution_start_time
print("Prompt executed in {:.2f} seconds".format(execution_time))
flags = q.get_flags()
free_memory = flags.get("free_memory", False)
if flags.get("unload_models", free_memory):
comfy.model_management.unload_all_models()
need_gc = True
last_gc_collect = 0
if free_memory:
e.reset()
need_gc = True
last_gc_collect = 0
if need_gc:
current_time = time.perf_counter()
if (current_time - last_gc_collect) > gc_collect_interval:
@ -127,7 +146,9 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
def hijack_progress(server):
def hook(value, total, preview_image):
comfy.model_management.throw_exception_if_processing_interrupted()
server.send_sync("progress", {"value": value, "max": total}, server.client_id)
progress = {"value": value, "max": total, "prompt_id": server.last_prompt_id, "node": server.last_node_id}
server.send_sync("progress", progress, server.client_id)
if preview_image is not None:
server.send_sync(BinaryEventTypes.UNENCODED_PREVIEW_IMAGE, preview_image, server.client_id)
comfy.utils.set_progress_bar_global_hook(hook)

93
nodes.py

@ -9,7 +9,7 @@ import math
import time
import random
from PIL import Image, ImageOps
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
import numpy as np
import safetensors.torch
@ -359,6 +359,62 @@ class VAEEncodeForInpaint:
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
class InpaintModelConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"pixels": ("IMAGE", ),
"mask": ("MASK", ),
}}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/inpaint"
def encode(self, positive, negative, pixels, vae, mask):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
orig_pixels = pixels
pixels = orig_pixels.clone()
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
m = (1.0 - mask.round()).squeeze(1)
for i in range(3):
pixels[:,:,:,i] -= 0.5
pixels[:,:,:,i] *= m
pixels[:,:,:,i] += 0.5
concat_latent = vae.encode(pixels)
orig_latent = vae.encode(orig_pixels)
out_latent = {}
out_latent["samples"] = orig_latent
out_latent["noise_mask"] = mask
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
d["concat_latent_image"] = concat_latent
d["concat_mask"] = mask
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1], out_latent)
class SaveLatent:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@ -1410,8 +1466,13 @@ class LoadImage:
FUNCTION = "load_image"
def load_image(self, image):
image_path = folder_paths.get_annotated_filepath(image)
i = Image.open(image_path)
img = Image.open(image_path)
output_images = []
output_masks = []
for i in ImageSequence.Iterator(img):
i = ImageOps.exif_transpose(i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
@ -1420,7 +1481,17 @@ class LoadImage:
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
return (image, mask.unsqueeze(0))
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
@classmethod
def IS_CHANGED(s, image):
@ -1457,6 +1528,8 @@ class LoadImageMask:
i = Image.open(image_path)
i = ImageOps.exif_transpose(i)
if i.getbands() != ("R", "G", "B", "A"):
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
i = i.convert("RGBA")
mask = None
c = channel[0].upper()
@ -1478,13 +1551,10 @@ class LoadImageMask:
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image, channel):
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
if channel not in s._color_channels:
return "Invalid color channel: {}".format(channel)
return True
class ImageScale:
@ -1614,10 +1684,11 @@ class ImagePadForOutpaint:
def expand_image(self, image, left, top, right, bottom, feathering):
d1, d2, d3, d4 = image.size()
new_image = torch.zeros(
new_image = torch.ones(
(d1, d2 + top + bottom, d3 + left + right, d4),
dtype=torch.float32,
)
) * 0.5
new_image[:, top:top + d2, left:left + d3, :] = image
mask = torch.ones(
@ -1709,6 +1780,7 @@ NODE_CLASS_MAPPINGS = {
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
"GLIGENLoader": GLIGENLoader,
"GLIGENTextBoxApply": GLIGENTextBoxApply,
"InpaintModelConditioning": InpaintModelConditioning,
"CheckpointLoader": CheckpointLoader,
"DiffusersLoader": DiffusersLoader,
@ -1868,6 +1940,9 @@ def init_custom_nodes():
"nodes_images.py",
"nodes_video_model.py",
"nodes_sag.py",
"nodes_perpneg.py",
"nodes_stable3d.py",
"nodes_sdupscale.py",
]
for node_file in extras_files:

2
requirements.txt

@ -1,10 +1,10 @@
torch
torchsde
torchvision
einops
transformers>=4.25.1
safetensors>=0.3.0
aiohttp
accelerate
pyyaml
Pillow
scipy

20
server.py

@ -30,6 +30,7 @@ from comfy.cli_args import args
import comfy.utils
import comfy.model_management
from app.user_manager import UserManager
class BinaryEventTypes:
PREVIEW_IMAGE = 1
@ -72,6 +73,7 @@ class PromptServer():
mimetypes.init()
mimetypes.types_map['.js'] = 'application/javascript; charset=utf-8'
self.user_manager = UserManager()
self.supports = ["custom_nodes_from_web"]
self.prompt_queue = None
self.loop = loop
@ -507,6 +509,17 @@ class PromptServer():
nodes.interrupt_processing()
return web.Response(status=200)
@routes.post("/free")
async def post_free(request):
json_data = await request.json()
unload_models = json_data.get("unload_models", False)
free_memory = json_data.get("free_memory", False)
if unload_models:
self.prompt_queue.set_flag("unload_models", unload_models)
if free_memory:
self.prompt_queue.set_flag("free_memory", free_memory)
return web.Response(status=200)
@routes.post("/history")
async def post_history(request):
json_data = await request.json()
@ -521,6 +534,7 @@ class PromptServer():
return web.Response(status=200)
def add_routes(self):
self.user_manager.add_routes(self.routes)
self.app.add_routes(self.routes)
for name, dir in nodes.EXTENSION_WEB_DIRS.items():
@ -584,7 +598,8 @@ class PromptServer():
message = self.encode_bytes(event, data)
if sid is None:
for ws in self.sockets.values():
sockets = list(self.sockets.values())
for ws in sockets:
await send_socket_catch_exception(ws.send_bytes, message)
elif sid in self.sockets:
await send_socket_catch_exception(self.sockets[sid].send_bytes, message)
@ -593,7 +608,8 @@ class PromptServer():
message = {"type": event, "data": data}
if sid is None:
for ws in self.sockets.values():
sockets = list(self.sockets.values())
for ws in sockets:
await send_socket_catch_exception(ws.send_json, message)
elif sid in self.sockets:
await send_socket_catch_exception(self.sockets[sid].send_json, message)

9
tests-ui/afterSetup.js

@ -0,0 +1,9 @@
const { start } = require("./utils");
const lg = require("./utils/litegraph");
// Load things once per test file before to ensure its all warmed up for the tests
beforeAll(async () => {
lg.setup(global);
await start({ resetEnv: true });
lg.teardown(global);
});

3
tests-ui/babel.config.json

@ -1,3 +1,4 @@
{
"presets": ["@babel/preset-env"]
"presets": ["@babel/preset-env"],
"plugins": ["babel-plugin-transform-import-meta"]
}

2
tests-ui/jest.config.js

@ -2,8 +2,10 @@
const config = {
testEnvironment: "jsdom",
setupFiles: ["./globalSetup.js"],
setupFilesAfterEnv: ["./afterSetup.js"],
clearMocks: true,
resetModules: true,
testTimeout: 10000
};
module.exports = config;

20
tests-ui/package-lock.json generated

@ -11,6 +11,7 @@
"devDependencies": {
"@babel/preset-env": "^7.22.20",
"@types/jest": "^29.5.5",
"babel-plugin-transform-import-meta": "^2.2.1",
"jest": "^29.7.0",
"jest-environment-jsdom": "^29.7.0"
}
@ -2591,6 +2592,19 @@
"@babel/core": "^7.4.0 || ^8.0.0-0 <8.0.0"
}
},
"node_modules/babel-plugin-transform-import-meta": {
"version": "2.2.1",
"resolved": "https://registry.npmjs.org/babel-plugin-transform-import-meta/-/babel-plugin-transform-import-meta-2.2.1.tgz",
"integrity": "sha512-AxNh27Pcg8Kt112RGa3Vod2QS2YXKKJ6+nSvRtv7qQTJAdx0MZa4UHZ4lnxHUWA2MNbLuZQv5FVab4P1CoLOWw==",
"dev": true,
"dependencies": {
"@babel/template": "^7.4.4",
"tslib": "^2.4.0"
},
"peerDependencies": {
"@babel/core": "^7.10.0"
}
},
"node_modules/babel-preset-current-node-syntax": {
"version": "1.0.1",
"resolved": "https://registry.npmjs.org/babel-preset-current-node-syntax/-/babel-preset-current-node-syntax-1.0.1.tgz",
@ -5233,6 +5247,12 @@
"node": ">=12"
}
},
"node_modules/tslib": {
"version": "2.6.2",
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.6.2.tgz",
"integrity": "sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==",
"dev": true
},
"node_modules/type-detect": {
"version": "4.0.8",
"resolved": "https://registry.npmjs.org/type-detect/-/type-detect-4.0.8.tgz",

1
tests-ui/package.json

@ -24,6 +24,7 @@
"devDependencies": {
"@babel/preset-env": "^7.22.20",
"@types/jest": "^29.5.5",
"babel-plugin-transform-import-meta": "^2.2.1",
"jest": "^29.7.0",
"jest-environment-jsdom": "^29.7.0"
}

32
tests-ui/tests/groupNode.test.js

@ -970,4 +970,36 @@ describe("group node", () => {
});
});
});
test("converted inputs with linked widgets map values correctly on creation", async () => {
const { ez, graph, app } = await start();
const k1 = ez.KSampler();
const k2 = ez.KSampler();
k1.widgets.seed.convertToInput();
k2.widgets.seed.convertToInput();
const rr = ez.Reroute();
rr.outputs[0].connectTo(k1.inputs.seed);
rr.outputs[0].connectTo(k2.inputs.seed);
const group = await convertToGroup(app, graph, "test", [k1, k2, rr]);
expect(group.widgets.steps.value).toBe(20);
expect(group.widgets.cfg.value).toBe(8);
expect(group.widgets.scheduler.value).toBe("normal");
expect(group.widgets["KSampler steps"].value).toBe(20);
expect(group.widgets["KSampler cfg"].value).toBe(8);
expect(group.widgets["KSampler scheduler"].value).toBe("normal");
});
test("allow multiple of the same node type to be added", async () => {
const { ez, graph, app } = await start();
const nodes = [...Array(10)].map(() => ez.ImageScaleBy());
const group = await convertToGroup(app, graph, "test", nodes);
expect(group.inputs.length).toBe(10);
expect(group.outputs.length).toBe(10);
expect(group.widgets.length).toBe(20);
expect(group.widgets.map((w) => w.widget.name)).toStrictEqual(
[...Array(10)]
.map((_, i) => `${i > 0 ? "ImageScaleBy " : ""}${i > 1 ? i + " " : ""}`)
.flatMap((p) => [`${p}upscale_method`, `${p}scale_by`])
);
});
});

295
tests-ui/tests/users.test.js

@ -0,0 +1,295 @@
// @ts-check
/// <reference path="../node_modules/@types/jest/index.d.ts" />
const { start } = require("../utils");
const lg = require("../utils/litegraph");
describe("users", () => {
beforeEach(() => {
lg.setup(global);
});
afterEach(() => {
lg.teardown(global);
});
function expectNoUserScreen() {
// Ensure login isnt visible
const selection = document.querySelectorAll("#comfy-user-selection")?.[0];
expect(selection["style"].display).toBe("none");
const menu = document.querySelectorAll(".comfy-menu")?.[0];
expect(window.getComputedStyle(menu)?.display).not.toBe("none");
}
describe("multi-user", () => {
function mockAddStylesheet() {
const utils = require("../../web/scripts/utils");
utils.addStylesheet = jest.fn().mockReturnValue(Promise.resolve());
}
async function waitForUserScreenShow() {
mockAddStylesheet();
// Wait for "show" to be called
const { UserSelectionScreen } = require("../../web/scripts/ui/userSelection");
let resolve, reject;
const fn = UserSelectionScreen.prototype.show;
const p = new Promise((res, rej) => {
resolve = res;
reject = rej;
});
jest.spyOn(UserSelectionScreen.prototype, "show").mockImplementation(async (...args) => {
const res = fn(...args);
await new Promise(process.nextTick); // wait for promises to resolve
resolve();
return res;
});
// @ts-ignore
setTimeout(() => reject("timeout waiting for UserSelectionScreen to be shown."), 500);
await p;
await new Promise(process.nextTick); // wait for promises to resolve
}
async function testUserScreen(onShown, users) {
if (!users) {
users = {};
}
const starting = start({
resetEnv: true,
userConfig: { storage: "server", users },
});
// Ensure no current user
expect(localStorage["Comfy.userId"]).toBeFalsy();
expect(localStorage["Comfy.userName"]).toBeFalsy();
await waitForUserScreenShow();
const selection = document.querySelectorAll("#comfy-user-selection")?.[0];
expect(selection).toBeTruthy();
// Ensure login is visible
expect(window.getComputedStyle(selection)?.display).not.toBe("none");
// Ensure menu is hidden
const menu = document.querySelectorAll(".comfy-menu")?.[0];
expect(window.getComputedStyle(menu)?.display).toBe("none");
const isCreate = await onShown(selection);
// Submit form
selection.querySelectorAll("form")[0].submit();
await new Promise(process.nextTick); // wait for promises to resolve
// Wait for start
const s = await starting;
// Ensure login is removed
expect(document.querySelectorAll("#comfy-user-selection")).toHaveLength(0);
expect(window.getComputedStyle(menu)?.display).not.toBe("none");
// Ensure settings + templates are saved
const { api } = require("../../web/scripts/api");
expect(api.createUser).toHaveBeenCalledTimes(+isCreate);
expect(api.storeSettings).toHaveBeenCalledTimes(+isCreate);
expect(api.storeUserData).toHaveBeenCalledTimes(+isCreate);
if (isCreate) {
expect(api.storeUserData).toHaveBeenCalledWith("comfy.templates.json", null, { stringify: false });
expect(s.app.isNewUserSession).toBeTruthy();
} else {
expect(s.app.isNewUserSession).toBeFalsy();
}
return { users, selection, ...s };
}
it("allows user creation if no users", async () => {
const { users } = await testUserScreen((selection) => {
// Ensure we have no users flag added
expect(selection.classList.contains("no-users")).toBeTruthy();
// Enter a username
const input = selection.getElementsByTagName("input")[0];
input.focus();
input.value = "Test User";
return true;
});
expect(users).toStrictEqual({
"Test User!": "Test User",
});
expect(localStorage["Comfy.userId"]).toBe("Test User!");
expect(localStorage["Comfy.userName"]).toBe("Test User");
});
it("allows user creation if no current user but other users", async () => {
const users = {
"Test User 2!": "Test User 2",
};
await testUserScreen((selection) => {
expect(selection.classList.contains("no-users")).toBeFalsy();
// Enter a username
const input = selection.getElementsByTagName("input")[0];
input.focus();
input.value = "Test User 3";
return true;
}, users);
expect(users).toStrictEqual({
"Test User 2!": "Test User 2",
"Test User 3!": "Test User 3",
});
expect(localStorage["Comfy.userId"]).toBe("Test User 3!");
expect(localStorage["Comfy.userName"]).toBe("Test User 3");
});
it("allows user selection if no current user but other users", async () => {
const users = {
"A!": "A",
"B!": "B",
"C!": "C",
};
await testUserScreen((selection) => {
expect(selection.classList.contains("no-users")).toBeFalsy();
// Check user list
const select = selection.getElementsByTagName("select")[0];
const options = select.getElementsByTagName("option");
expect(
[...options]
.filter((o) => !o.disabled)
.reduce((p, n) => {
p[n.getAttribute("value")] = n.textContent;
return p;
}, {})
).toStrictEqual(users);
// Select an option
select.focus();
select.value = options[2].value;
return false;
}, users);
expect(users).toStrictEqual(users);
expect(localStorage["Comfy.userId"]).toBe("B!");
expect(localStorage["Comfy.userName"]).toBe("B");
});
it("doesnt show user screen if current user", async () => {
const starting = start({
resetEnv: true,
userConfig: {
storage: "server",
users: {
"User!": "User",
},
},
localStorage: {
"Comfy.userId": "User!",
"Comfy.userName": "User",
},
});
await new Promise(process.nextTick); // wait for promises to resolve
expectNoUserScreen();
await starting;
});
it("allows user switching", async () => {
const { app } = await start({
resetEnv: true,
userConfig: {
storage: "server",
users: {
"User!": "User",
},
},
localStorage: {
"Comfy.userId": "User!",
"Comfy.userName": "User",
},
});
// cant actually test switching user easily but can check the setting is present
expect(app.ui.settings.settingsLookup["Comfy.SwitchUser"]).toBeTruthy();
});
});
describe("single-user", () => {
it("doesnt show user creation if no default user", async () => {
const { app } = await start({
resetEnv: true,
userConfig: { migrated: false, storage: "server" },
});
expectNoUserScreen();
// It should store the settings
const { api } = require("../../web/scripts/api");
expect(api.storeSettings).toHaveBeenCalledTimes(1);
expect(api.storeUserData).toHaveBeenCalledTimes(1);
expect(api.storeUserData).toHaveBeenCalledWith("comfy.templates.json", null, { stringify: false });
expect(app.isNewUserSession).toBeTruthy();
});
it("doesnt show user creation if default user", async () => {
const { app } = await start({
resetEnv: true,
userConfig: { migrated: true, storage: "server" },
});
expectNoUserScreen();
// It should store the settings
const { api } = require("../../web/scripts/api");
expect(api.storeSettings).toHaveBeenCalledTimes(0);
expect(api.storeUserData).toHaveBeenCalledTimes(0);
expect(app.isNewUserSession).toBeFalsy();
});
it("doesnt allow user switching", async () => {
const { app } = await start({
resetEnv: true,
userConfig: { migrated: true, storage: "server" },
});
expectNoUserScreen();
expect(app.ui.settings.settingsLookup["Comfy.SwitchUser"]).toBeFalsy();
});
});
describe("browser-user", () => {
it("doesnt show user creation if no default user", async () => {
const { app } = await start({
resetEnv: true,
userConfig: { migrated: false, storage: "browser" },
});
expectNoUserScreen();
// It should store the settings
const { api } = require("../../web/scripts/api");
expect(api.storeSettings).toHaveBeenCalledTimes(0);
expect(api.storeUserData).toHaveBeenCalledTimes(0);
expect(app.isNewUserSession).toBeFalsy();
});
it("doesnt show user creation if default user", async () => {
const { app } = await start({
resetEnv: true,
userConfig: { migrated: true, storage: "server" },
});
expectNoUserScreen();
// It should store the settings
const { api } = require("../../web/scripts/api");
expect(api.storeSettings).toHaveBeenCalledTimes(0);
expect(api.storeUserData).toHaveBeenCalledTimes(0);
expect(app.isNewUserSession).toBeFalsy();
});
it("doesnt allow user switching", async () => {
const { app } = await start({
resetEnv: true,
userConfig: { migrated: true, storage: "browser" },
});
expectNoUserScreen();
expect(app.ui.settings.settingsLookup["Comfy.SwitchUser"]).toBeFalsy();
});
});
});

16
tests-ui/utils/index.js

@ -1,10 +1,18 @@
const { mockApi } = require("./setup");
const { Ez } = require("./ezgraph");
const lg = require("./litegraph");
const fs = require("fs");
const path = require("path");
const html = fs.readFileSync(path.resolve(__dirname, "../../web/index.html"))
/**
*
* @param { Parameters<mockApi>[0] & { resetEnv?: boolean, preSetup?(app): Promise<void> } } config
* @param { Parameters<typeof mockApi>[0] & {
* resetEnv?: boolean,
* preSetup?(app): Promise<void>,
* localStorage?: Record<string, string>
* } } config
* @returns
*/
export async function start(config = {}) {
@ -12,12 +20,18 @@ export async function start(config = {}) {
jest.resetModules();
jest.resetAllMocks();
lg.setup(global);
localStorage.clear();
sessionStorage.clear();
}
Object.assign(localStorage, config.localStorage ?? {});
document.body.innerHTML = html;
mockApi(config);
const { app } = require("../../web/scripts/app");
config.preSetup?.(app);
await app.setup();
return { ...Ez.graph(app, global["LiteGraph"], global["LGraphCanvas"]), app };
}

36
tests-ui/utils/setup.js

@ -18,9 +18,21 @@ function* walkSync(dir) {
*/
/**
* @param { { mockExtensions?: string[], mockNodeDefs?: Record<string, ComfyObjectInfo> } } config
* @param {{
* mockExtensions?: string[],
* mockNodeDefs?: Record<string, ComfyObjectInfo>,
* settings?: Record<string, string>
* userConfig?: {storage: "server" | "browser", users?: Record<string, any>, migrated?: boolean },
* userData?: Record<string, any>
* }} config
*/
export function mockApi({ mockExtensions, mockNodeDefs } = {}) {
export function mockApi(config = {}) {
let { mockExtensions, mockNodeDefs, userConfig, settings, userData } = {
userConfig,
settings: {},
userData: {},
...config,
};
if (!mockExtensions) {
mockExtensions = Array.from(walkSync(path.resolve("../web/extensions/core")))
.filter((x) => x.endsWith(".js"))
@ -40,6 +52,26 @@ export function mockApi({ mockExtensions, mockNodeDefs } = {}) {
getNodeDefs: jest.fn(() => mockNodeDefs),
init: jest.fn(),
apiURL: jest.fn((x) => "../../web/" + x),
createUser: jest.fn((username) => {
if(username in userConfig.users) {
return { status: 400, json: () => "Duplicate" }
}
userConfig.users[username + "!"] = username;
return { status: 200, json: () => username + "!" }
}),
getUserConfig: jest.fn(() => userConfig ?? { storage: "browser", migrated: false }),
getSettings: jest.fn(() => settings),
storeSettings: jest.fn((v) => Object.assign(settings, v)),
getUserData: jest.fn((f) => {
if (f in userData) {
return { status: 200, json: () => userData[f] };
} else {
return { status: 404 };
}
}),
storeUserData: jest.fn((file, data) => {
userData[file] = data;
}),
};
jest.mock("../../web/scripts/api", () => ({
get api() {

9
web/extensions/core/groupNode.js

@ -331,16 +331,17 @@ export class GroupNodeConfig {
getInputConfig(node, inputName, seenInputs, config, extra) {
let name = node.inputs?.find((inp) => inp.name === inputName)?.label ?? inputName;
let key = name;
let prefix = "";
// Special handling for primitive to include the title if it is set rather than just "value"
if ((node.type === "PrimitiveNode" && node.title) || name in seenInputs) {
prefix = `${node.title ?? node.type} `;
name = `${prefix}${inputName}`;
key = name = `${prefix}${inputName}`;
if (name in seenInputs) {
name = `${prefix}${seenInputs[name]} ${inputName}`;
}
}
seenInputs[name] = (seenInputs[name] ?? 1) + 1;
seenInputs[key] = (seenInputs[key] ?? 1) + 1;
if (inputName === "seed" || inputName === "noise_seed") {
if (!extra) extra = {};
@ -1010,10 +1011,10 @@ export class GroupNodeHandler {
const newName = map[oldName];
const widgetIndex = this.node.widgets.findIndex((w) => w.name === newName);
const mainWidget = this.node.widgets[widgetIndex];
if (this.populatePrimitive(node, nodeId, oldName, i, linkedShift)) {
if (this.populatePrimitive(node, nodeId, oldName, i, linkedShift) || widgetIndex === -1) {
// Find the inner widget and shift by the number of linked widgets as they will have been removed too
const innerWidget = this.innerNodes[nodeId].widgets?.find((w) => w.name === oldName);
linkedShift += innerWidget.linkedWidgets?.length ?? 0;
linkedShift += innerWidget?.linkedWidgets?.length ?? 0;
}
if (widgetIndex === -1) {
continue;

62
web/extensions/core/nodeTemplates.js

@ -1,4 +1,5 @@
import { app } from "../../scripts/app.js";
import { api } from "../../scripts/api.js";
import { ComfyDialog, $el } from "../../scripts/ui.js";
import { GroupNodeConfig, GroupNodeHandler } from "./groupNode.js";
@ -20,16 +21,20 @@ import { GroupNodeConfig, GroupNodeHandler } from "./groupNode.js";
// Open the manage dialog and Drag and drop elements using the "Name:" label as handle
const id = "Comfy.NodeTemplates";
const file = "comfy.templates.json";
class ManageTemplates extends ComfyDialog {
constructor() {
super();
this.load().then((v) => {
this.templates = v;
});
this.element.classList.add("comfy-manage-templates");
this.templates = this.load();
this.draggedEl = null;
this.saveVisualCue = null;
this.emptyImg = new Image();
this.emptyImg.src = '';
this.emptyImg.src = "";
this.importInput = $el("input", {
type: "file",
@ -67,32 +72,65 @@ class ManageTemplates extends ComfyDialog {
return btns;
}
load() {
const templates = localStorage.getItem(id);
if (templates) {
return JSON.parse(templates);
async load() {
let templates = [];
if (app.storageLocation === "server") {
if (app.isNewUserSession) {
// New user so migrate existing templates
const json = localStorage.getItem(id);
if (json) {
templates = JSON.parse(json);
}
await api.storeUserData(file, json, { stringify: false });
} else {
const res = await api.getUserData(file);
if (res.status === 200) {
try {
templates = await res.json();
} catch (error) {
}
} else if (res.status !== 404) {
console.error(res.status + " " + res.statusText);
}
}
} else {
return [];
const json = localStorage.getItem(id);
if (json) {
templates = JSON.parse(json);
}
}
store() {
return templates ?? [];
}
async store() {
if(app.storageLocation === "server") {
const templates = JSON.stringify(this.templates, undefined, 4);
localStorage.setItem(id, templates); // Backwards compatibility
try {
await api.storeUserData(file, templates, { stringify: false });
} catch (error) {
console.error(error);
alert(error.message);
}
} else {
localStorage.setItem(id, JSON.stringify(this.templates));
}
}
async importAll() {
for (const file of this.importInput.files) {
if (file.type === "application/json" || file.name.endsWith(".json")) {
const reader = new FileReader();
reader.onload = async () => {
var importFile = JSON.parse(reader.result);
if (importFile && importFile?.templates) {
const importFile = JSON.parse(reader.result);
if (importFile?.templates) {
for (const template of importFile.templates) {
if (template?.name && template?.data) {
this.templates.push(template);
}
}
this.store();
await this.store();
}
};
await reader.readAsText(file);
@ -159,7 +197,7 @@ class ManageTemplates extends ComfyDialog {
e.currentTarget.style.border = "1px dashed transparent";
e.currentTarget.removeAttribute("draggable");
// rearrange the elements in the localStorage
// rearrange the elements
this.element.querySelectorAll('.tempateManagerRow').forEach((el,i) => {
var prev_i = el.dataset.id;

30
web/index.html

@ -16,5 +16,33 @@
window.graph = app.graph;
</script>
</head>
<body class="litegraph"></body>
<body class="litegraph">
<div id="comfy-user-selection" class="comfy-user-selection" style="display: none;">
<main class="comfy-user-selection-inner">
<h1>ComfyUI</h1>
<form>
<section>
<label>New user:
<input placeholder="Enter a username" />
</label>
</section>
<div class="comfy-user-existing">
<span class="or-separator">OR</span>
<section>
<label>
Existing user:
<select>
<option hidden disabled selected value> Select a user </option>
</select>
</label>
</section>
</div>
<footer>
<span class="comfy-user-error">&nbsp;</span>
<button class="comfy-btn comfy-user-button-next">Next</button>
</footer>
</form>
</main>
</div>
</body>
</html>

45
web/lib/litegraph.core.js

@ -48,7 +48,7 @@
EVENT_LINK_COLOR: "#A86",
CONNECTING_LINK_COLOR: "#AFA",
MAX_NUMBER_OF_NODES: 1000, //avoid infinite loops
MAX_NUMBER_OF_NODES: 10000, //avoid infinite loops
DEFAULT_POSITION: [100, 100], //default node position
VALID_SHAPES: ["default", "box", "round", "card"], //,"circle"
@ -3788,16 +3788,42 @@
/**
* returns the bounding of the object, used for rendering purposes
* bounding is: [topleft_cornerx, topleft_cornery, width, height]
* @method getBounding
* @return {Float32Array[4]} the total size
* @param out {Float32Array[4]?} [optional] a place to store the output, to free garbage
* @param compute_outer {boolean?} [optional] set to true to include the shadow and connection points in the bounding calculation
* @return {Float32Array[4]} the bounding box in format of [topleft_cornerx, topleft_cornery, width, height]
*/
LGraphNode.prototype.getBounding = function(out) {
LGraphNode.prototype.getBounding = function(out, compute_outer) {
out = out || new Float32Array(4);
out[0] = this.pos[0] - 4;
out[1] = this.pos[1] - LiteGraph.NODE_TITLE_HEIGHT;
out[2] = this.flags.collapsed ? (this._collapsed_width || LiteGraph.NODE_COLLAPSED_WIDTH) : this.size[0] + 4;
out[3] = this.flags.collapsed ? LiteGraph.NODE_TITLE_HEIGHT : this.size[1] + LiteGraph.NODE_TITLE_HEIGHT;
const nodePos = this.pos;
const isCollapsed = this.flags.collapsed;
const nodeSize = this.size;
let left_offset = 0;
// 1 offset due to how nodes are rendered
let right_offset = 1 ;
let top_offset = 0;
let bottom_offset = 0;
if (compute_outer) {
// 4 offset for collapsed node connection points
left_offset = 4;
// 6 offset for right shadow and collapsed node connection points
right_offset = 6 + left_offset;
// 4 offset for collapsed nodes top connection points
top_offset = 4;
// 5 offset for bottom shadow and collapsed node connection points
bottom_offset = 5 + top_offset;
}
out[0] = nodePos[0] - left_offset;
out[1] = nodePos[1] - LiteGraph.NODE_TITLE_HEIGHT - top_offset;
out[2] = isCollapsed ?
(this._collapsed_width || LiteGraph.NODE_COLLAPSED_WIDTH) + right_offset :
nodeSize[0] + right_offset;
out[3] = isCollapsed ?
LiteGraph.NODE_TITLE_HEIGHT + bottom_offset :
nodeSize[1] + LiteGraph.NODE_TITLE_HEIGHT + bottom_offset;
if (this.onBounding) {
this.onBounding(out);
@ -7674,7 +7700,7 @@ LGraphNode.prototype.executeAction = function(action)
continue;
}
if (!overlapBounding(this.visible_area, n.getBounding(temp))) {
if (!overlapBounding(this.visible_area, n.getBounding(temp, true))) {
continue;
} //out of the visible area
@ -11336,6 +11362,7 @@ LGraphNode.prototype.executeAction = function(action)
name_element.innerText = title;
var value_element = dialog.querySelector(".value");
value_element.value = value;
value_element.select();
var input = value_element;
input.addEventListener("keydown", function(e) {

100
web/scripts/api.js

@ -12,6 +12,13 @@ class ComfyApi extends EventTarget {
}
fetchApi(route, options) {
if (!options) {
options = {};
}
if (!options.headers) {
options.headers = {};
}
options.headers["Comfy-User"] = this.user;
return fetch(this.apiURL(route), options);
}
@ -315,6 +322,99 @@ class ComfyApi extends EventTarget {
async interrupt() {
await this.#postItem("interrupt", null);
}
/**
* Gets user configuration data and where data should be stored
* @returns { Promise<{ storage: "server" | "browser", users?: Promise<string, unknown>, migrated?: boolean }> }
*/
async getUserConfig() {
return (await this.fetchApi("/users")).json();
}
/**
* Creates a new user
* @param { string } username
* @returns The fetch response
*/
createUser(username) {
return this.fetchApi("/users", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({ username }),
});
}
/**
* Gets all setting values for the current user
* @returns { Promise<string, unknown> } A dictionary of id -> value
*/
async getSettings() {
return (await this.fetchApi("/settings")).json();
}
/**
* Gets a setting for the current user
* @param { string } id The id of the setting to fetch
* @returns { Promise<unknown> } The setting value
*/
async getSetting(id) {
return (await this.fetchApi(`/settings/${encodeURIComponent(id)}`)).json();
}
/**
* Stores a dictionary of settings for the current user
* @param { Record<string, unknown> } settings Dictionary of setting id -> value to save
* @returns { Promise<void> }
*/
async storeSettings(settings) {
return this.fetchApi(`/settings`, {
method: "POST",
body: JSON.stringify(settings)
});
}
/**
* Stores a setting for the current user
* @param { string } id The id of the setting to update
* @param { unknown } value The value of the setting
* @returns { Promise<void> }
*/
async storeSetting(id, value) {
return this.fetchApi(`/settings/${encodeURIComponent(id)}`, {
method: "POST",
body: JSON.stringify(value)
});
}
/**
* Gets a user data file for the current user
* @param { string } file The name of the userdata file to load
* @param { RequestInit } [options]
* @returns { Promise<unknown> } The fetch response object
*/
async getUserData(file, options) {
return this.fetchApi(`/userdata/${encodeURIComponent(file)}`, options);
}
/**
* Stores a user data file for the current user
* @param { string } file The name of the userdata file to save
* @param { unknown } data The data to save to the file
* @param { RequestInit & { stringify?: boolean, throwOnError?: boolean } } [options]
* @returns { Promise<void> }
*/
async storeUserData(file, data, options = { stringify: true, throwOnError: true }) {
const resp = await this.fetchApi(`/userdata/${encodeURIComponent(file)}`, {
method: "POST",
body: options?.stringify ? JSON.stringify(data) : data,
...options,
});
if (resp.status !== 200) {
throw new Error(`Error storing user data file '${file}': ${resp.status} ${(await resp).statusText}`);
}
}
}
export const api = new ComfyApi();

101
web/scripts/app.js

@ -1291,10 +1291,92 @@ export class ComfyApp {
await Promise.all(extensionPromises);
}
async #migrateSettings() {
this.isNewUserSession = true;
// Store all current settings
const settings = Object.keys(this.ui.settings).reduce((p, n) => {
const v = localStorage[`Comfy.Settings.${n}`];
if (v) {
try {
p[n] = JSON.parse(v);
} catch (error) {}
}
return p;
}, {});
await api.storeSettings(settings);
}
async #setUser() {
const userConfig = await api.getUserConfig();
this.storageLocation = userConfig.storage;
if (typeof userConfig.migrated == "boolean") {
// Single user mode migrated true/false for if the default user is created
if (!userConfig.migrated && this.storageLocation === "server") {
// Default user not created yet
await this.#migrateSettings();
}
return;
}
this.multiUserServer = true;
let user = localStorage["Comfy.userId"];
const users = userConfig.users ?? {};
if (!user || !users[user]) {
// This will rarely be hit so move the loading to on demand
const { UserSelectionScreen } = await import("./ui/userSelection.js");
this.ui.menuContainer.style.display = "none";
const { userId, username, created } = await new UserSelectionScreen().show(users, user);
this.ui.menuContainer.style.display = "";
user = userId;
localStorage["Comfy.userName"] = username;
localStorage["Comfy.userId"] = user;
if (created) {
api.user = user;
await this.#migrateSettings();
}
}
api.user = user;
this.ui.settings.addSetting({
id: "Comfy.SwitchUser",
name: "Switch User",
type: (name) => {
let currentUser = localStorage["Comfy.userName"];
if (currentUser) {
currentUser = ` (${currentUser})`;
}
return $el("tr", [
$el("td", [
$el("label", {
textContent: name,
}),
]),
$el("td", [
$el("button", {
textContent: name + (currentUser ?? ""),
onclick: () => {
delete localStorage["Comfy.userId"];
delete localStorage["Comfy.userName"];
window.location.reload();
},
}),
]),
]);
},
});
}
/**
* Set up the app on the page
*/
async setup() {
await this.#setUser();
await this.ui.settings.load();
await this.#loadExtensions();
// Create and mount the LiteGraph in the DOM
@ -1781,10 +1863,19 @@ export class ComfyApp {
}
}
output[String(node.id)] = {
let node_data = {
inputs,
class_type: node.comfyClass,
};
if (this.ui.settings.getSettingValue("Comfy.DevMode")) {
// Ignored by the backend.
node_data["_meta"] = {
title: node.title,
}
}
output[String(node.id)] = node_data;
}
}
@ -2011,12 +2102,8 @@ export class ComfyApp {
async refreshComboInNodes() {
const defs = await api.getNodeDefs();
for(const nodeId in LiteGraph.registered_node_types) {
const node = LiteGraph.registered_node_types[nodeId];
const nodeDef = defs[nodeId];
if(!nodeDef) continue;
node.nodeData = nodeDef;
for (const nodeId in defs) {
this.registerNodeDef(nodeId, defs[nodeId]);
}
for(let nodeNum in this.graph._nodes) {

1
web/scripts/domWidget.js

@ -177,6 +177,7 @@ LGraphCanvas.prototype.computeVisibleNodes = function () {
for (const w of node.widgets) {
if (w.element) {
w.element.hidden = hidden;
w.element.style.display = hidden ? "none" : undefined;
if (hidden) {
w.options.onHide?.(w);
}

269
web/scripts/ui.js

@ -1,4 +1,8 @@
import {api} from "./api.js";
import { api } from "./api.js";
import { ComfyDialog as _ComfyDialog } from "./ui/dialog.js";
import { ComfySettingsDialog } from "./ui/settings.js";
export const ComfyDialog = _ComfyDialog;
export function $el(tag, propsOrChildren, children) {
const split = tag.split(".");
@ -167,267 +171,6 @@ function dragElement(dragEl, settings) {
}
}
export class ComfyDialog {
constructor() {
this.element = $el("div.comfy-modal", {parent: document.body}, [
$el("div.comfy-modal-content", [$el("p", {$: (p) => (this.textElement = p)}), ...this.createButtons()]),
]);
}
createButtons() {
return [
$el("button", {
type: "button",
textContent: "Close",
onclick: () => this.close(),
}),
];
}
close() {
this.element.style.display = "none";
}
show(html) {
if (typeof html === "string") {
this.textElement.innerHTML = html;
} else {
this.textElement.replaceChildren(html);
}
this.element.style.display = "flex";
}
}
class ComfySettingsDialog extends ComfyDialog {
constructor() {
super();
this.element = $el("dialog", {
id: "comfy-settings-dialog",
parent: document.body,
}, [
$el("table.comfy-modal-content.comfy-table", [
$el("caption", {textContent: "Settings"}),
$el("tbody", {$: (tbody) => (this.textElement = tbody)}),
$el("button", {
type: "button",
textContent: "Close",
style: {
cursor: "pointer",
},
onclick: () => {
this.element.close();
},
}),
]),
]);
this.settings = [];
}
getSettingValue(id, defaultValue) {
const settingId = "Comfy.Settings." + id;
const v = localStorage[settingId];
return v == null ? defaultValue : JSON.parse(v);
}
setSettingValue(id, value) {
const settingId = "Comfy.Settings." + id;
localStorage[settingId] = JSON.stringify(value);
}
addSetting({id, name, type, defaultValue, onChange, attrs = {}, tooltip = "", options = undefined}) {
if (!id) {
throw new Error("Settings must have an ID");
}
if (this.settings.find((s) => s.id === id)) {
throw new Error(`Setting ${id} of type ${type} must have a unique ID.`);
}
const settingId = `Comfy.Settings.${id}`;
const v = localStorage[settingId];
let value = v == null ? defaultValue : JSON.parse(v);
// Trigger initial setting of value
if (onChange) {
onChange(value, undefined);
}
this.settings.push({
render: () => {
const setter = (v) => {
if (onChange) {
onChange(v, value);
}
localStorage[settingId] = JSON.stringify(v);
value = v;
};
value = this.getSettingValue(id, defaultValue);
let element;
const htmlID = id.replaceAll(".", "-");
const labelCell = $el("td", [
$el("label", {
for: htmlID,
classList: [tooltip !== "" ? "comfy-tooltip-indicator" : ""],
textContent: name,
})
]);
if (typeof type === "function") {
element = type(name, setter, value, attrs);
} else {
switch (type) {
case "boolean":
element = $el("tr", [
labelCell,
$el("td", [
$el("input", {
id: htmlID,
type: "checkbox",
checked: value,
onchange: (event) => {
const isChecked = event.target.checked;
if (onChange !== undefined) {
onChange(isChecked)
}
this.setSettingValue(id, isChecked);
},
}),
]),
])
break;
case "number":
element = $el("tr", [
labelCell,
$el("td", [
$el("input", {
type,
value,
id: htmlID,
oninput: (e) => {
setter(e.target.value);
},
...attrs
}),
]),
]);
break;
case "slider":
element = $el("tr", [
labelCell,
$el("td", [
$el("div", {
style: {
display: "grid",
gridAutoFlow: "column",
},
}, [
$el("input", {
...attrs,
value,
type: "range",
oninput: (e) => {
setter(e.target.value);
e.target.nextElementSibling.value = e.target.value;
},
}),
$el("input", {
...attrs,
value,
id: htmlID,
type: "number",
style: {maxWidth: "4rem"},
oninput: (e) => {
setter(e.target.value);
e.target.previousElementSibling.value = e.target.value;
},
}),
]),
]),
]);
break;
case "combo":
element = $el("tr", [
labelCell,
$el("td", [
$el(
"select",
{
oninput: (e) => {
setter(e.target.value);
},
},
(typeof options === "function" ? options(value) : options || []).map((opt) => {
if (typeof opt === "string") {
opt = { text: opt };
}
const v = opt.value ?? opt.text;
return $el("option", {
value: v,
textContent: opt.text,
selected: value + "" === v + "",
});
})
),
]),
]);
break;
case "text":
default:
if (type !== "text") {
console.warn(`Unsupported setting type '${type}, defaulting to text`);
}
element = $el("tr", [
labelCell,
$el("td", [
$el("input", {
value,
id: htmlID,
oninput: (e) => {
setter(e.target.value);
},
...attrs,
}),
]),
]);
break;
}
}
if (tooltip) {
element.title = tooltip;
}
return element;
},
});
const self = this;
return {
get value() {
return self.getSettingValue(id, defaultValue);
},
set value(v) {
self.setSettingValue(id, v);
},
};
}
show() {
this.textElement.replaceChildren(
$el("tr", {
style: {display: "none"},
}, [
$el("th"),
$el("th", {style: {width: "33%"}})
]),
...this.settings.map((s) => s.render()),
)
this.element.showModal();
}
}
class ComfyList {
#type;
#text;
@ -526,7 +269,7 @@ export class ComfyUI {
constructor(app) {
this.app = app;
this.dialog = new ComfyDialog();
this.settings = new ComfySettingsDialog();
this.settings = new ComfySettingsDialog(app);
this.batchCount = 1;
this.lastQueueSize = 0;

32
web/scripts/ui/dialog.js

@ -0,0 +1,32 @@
import { $el } from "../ui.js";
export class ComfyDialog {
constructor() {
this.element = $el("div.comfy-modal", { parent: document.body }, [
$el("div.comfy-modal-content", [$el("p", { $: (p) => (this.textElement = p) }), ...this.createButtons()]),
]);
}
createButtons() {
return [
$el("button", {
type: "button",
textContent: "Close",
onclick: () => this.close(),
}),
];
}
close() {
this.element.style.display = "none";
}
show(html) {
if (typeof html === "string") {
this.textElement.innerHTML = html;
} else {
this.textElement.replaceChildren(html);
}
this.element.style.display = "flex";
}
}

307
web/scripts/ui/settings.js

@ -0,0 +1,307 @@
import { $el } from "../ui.js";
import { api } from "../api.js";
import { ComfyDialog } from "./dialog.js";
export class ComfySettingsDialog extends ComfyDialog {
constructor(app) {
super();
this.app = app;
this.settingsValues = {};
this.settingsLookup = {};
this.element = $el(
"dialog",
{
id: "comfy-settings-dialog",
parent: document.body,
},
[
$el("table.comfy-modal-content.comfy-table", [
$el("caption", { textContent: "Settings" }),
$el("tbody", { $: (tbody) => (this.textElement = tbody) }),
$el("button", {
type: "button",
textContent: "Close",
style: {
cursor: "pointer",
},
onclick: () => {
this.element.close();
},
}),
]),
]
);
}
get settings() {
return Object.values(this.settingsLookup);
}
async load() {
if (this.app.storageLocation === "browser") {
this.settingsValues = localStorage;
} else {
this.settingsValues = await api.getSettings();
}
// Trigger onChange for any settings added before load
for (const id in this.settingsLookup) {
this.settingsLookup[id].onChange?.(this.settingsValues[this.getId(id)]);
}
}
getId(id) {
if (this.app.storageLocation === "browser") {
id = "Comfy.Settings." + id;
}
return id;
}
getSettingValue(id, defaultValue) {
let value = this.settingsValues[this.getId(id)];
if(value != null) {
if(this.app.storageLocation === "browser") {
try {
value = JSON.parse(value);
} catch (error) {
}
}
}
return value ?? defaultValue;
}
async setSettingValueAsync(id, value) {
const json = JSON.stringify(value);
localStorage["Comfy.Settings." + id] = json; // backwards compatibility for extensions keep setting in storage
let oldValue = this.getSettingValue(id, undefined);
this.settingsValues[this.getId(id)] = value;
if (id in this.settingsLookup) {
this.settingsLookup[id].onChange?.(value, oldValue);
}
await api.storeSetting(id, value);
}
setSettingValue(id, value) {
this.setSettingValueAsync(id, value).catch((err) => {
alert(`Error saving setting '${id}'`);
console.error(err);
});
}
addSetting({ id, name, type, defaultValue, onChange, attrs = {}, tooltip = "", options = undefined }) {
if (!id) {
throw new Error("Settings must have an ID");
}
if (id in this.settingsLookup) {
throw new Error(`Setting ${id} of type ${type} must have a unique ID.`);
}
let skipOnChange = false;
let value = this.getSettingValue(id);
if (value == null) {
if (this.app.isNewUserSession) {
// Check if we have a localStorage value but not a setting value and we are a new user
const localValue = localStorage["Comfy.Settings." + id];
if (localValue) {
value = JSON.parse(localValue);
this.setSettingValue(id, value); // Store on the server
}
}
if (value == null) {
value = defaultValue;
}
}
// Trigger initial setting of value
if (!skipOnChange) {
onChange?.(value, undefined);
}
this.settingsLookup[id] = {
id,
onChange,
name,
render: () => {
const setter = (v) => {
if (onChange) {
onChange(v, value);
}
this.setSettingValue(id, v);
value = v;
};
value = this.getSettingValue(id, defaultValue);
let element;
const htmlID = id.replaceAll(".", "-");
const labelCell = $el("td", [
$el("label", {
for: htmlID,
classList: [tooltip !== "" ? "comfy-tooltip-indicator" : ""],
textContent: name,
}),
]);
if (typeof type === "function") {
element = type(name, setter, value, attrs);
} else {
switch (type) {
case "boolean":
element = $el("tr", [
labelCell,
$el("td", [
$el("input", {
id: htmlID,
type: "checkbox",
checked: value,
onchange: (event) => {
const isChecked = event.target.checked;
if (onChange !== undefined) {
onChange(isChecked);
}
this.setSettingValue(id, isChecked);
},
}),
]),
]);
break;
case "number":
element = $el("tr", [
labelCell,
$el("td", [
$el("input", {
type,
value,
id: htmlID,
oninput: (e) => {
setter(e.target.value);
},
...attrs,
}),
]),
]);
break;
case "slider":
element = $el("tr", [
labelCell,
$el("td", [
$el(
"div",
{
style: {
display: "grid",
gridAutoFlow: "column",
},
},
[
$el("input", {
...attrs,
value,
type: "range",
oninput: (e) => {
setter(e.target.value);
e.target.nextElementSibling.value = e.target.value;
},
}),
$el("input", {
...attrs,
value,
id: htmlID,
type: "number",
style: { maxWidth: "4rem" },
oninput: (e) => {
setter(e.target.value);
e.target.previousElementSibling.value = e.target.value;
},
}),
]
),
]),
]);
break;
case "combo":
element = $el("tr", [
labelCell,
$el("td", [
$el(
"select",
{
oninput: (e) => {
setter(e.target.value);
},
},
(typeof options === "function" ? options(value) : options || []).map((opt) => {
if (typeof opt === "string") {
opt = { text: opt };
}
const v = opt.value ?? opt.text;
return $el("option", {
value: v,
textContent: opt.text,
selected: value + "" === v + "",
});
})
),
]),
]);
break;
case "text":
default:
if (type !== "text") {
console.warn(`Unsupported setting type '${type}, defaulting to text`);
}
element = $el("tr", [
labelCell,
$el("td", [
$el("input", {
value,
id: htmlID,
oninput: (e) => {
setter(e.target.value);
},
...attrs,
}),
]),
]);
break;
}
}
if (tooltip) {
element.title = tooltip;
}
return element;
},
};
const self = this;
return {
get value() {
return self.getSettingValue(id, defaultValue);
},
set value(v) {
self.setSettingValue(id, v);
},
};
}
show() {
this.textElement.replaceChildren(
$el(
"tr",
{
style: { display: "none" },
},
[$el("th"), $el("th", { style: { width: "33%" } })]
),
...this.settings.sort((a, b) => a.name.localeCompare(b.name)).map((s) => s.render())
);
this.element.showModal();
}
}

34
web/scripts/ui/spinner.css

@ -0,0 +1,34 @@
.lds-ring {
display: inline-block;
position: relative;
width: 1em;
height: 1em;
}
.lds-ring div {
box-sizing: border-box;
display: block;
position: absolute;
width: 100%;
height: 100%;
border: 0.15em solid #fff;
border-radius: 50%;
animation: lds-ring 1.2s cubic-bezier(0.5, 0, 0.5, 1) infinite;
border-color: #fff transparent transparent transparent;
}
.lds-ring div:nth-child(1) {
animation-delay: -0.45s;
}
.lds-ring div:nth-child(2) {
animation-delay: -0.3s;
}
.lds-ring div:nth-child(3) {
animation-delay: -0.15s;
}
@keyframes lds-ring {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}

9
web/scripts/ui/spinner.js

@ -0,0 +1,9 @@
import { addStylesheet } from "../utils.js";
addStylesheet(import.meta.url);
export function createSpinner() {
const div = document.createElement("div");
div.innerHTML = `<div class="lds-ring"><div></div><div></div><div></div><div></div></div>`;
return div.firstElementChild;
}

135
web/scripts/ui/userSelection.css

@ -0,0 +1,135 @@
.comfy-user-selection {
width: 100vw;
height: 100vh;
position: absolute;
top: 0;
left: 0;
z-index: 999;
display: flex;
align-items: center;
justify-content: center;
font-family: sans-serif;
background: linear-gradient(var(--tr-even-bg-color), var(--tr-odd-bg-color));
}
.comfy-user-selection-inner {
background: var(--comfy-menu-bg);
margin-top: -30vh;
padding: 20px 40px;
border-radius: 10px;
min-width: 365px;
position: relative;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.3);
}
.comfy-user-selection-inner form {
width: 100%;
display: flex;
flex-direction: column;
align-items: center;
}
.comfy-user-selection-inner h1 {
margin: 10px 0 30px 0;
font-weight: normal;
}
.comfy-user-selection-inner label {
display: flex;
flex-direction: column;
width: 100%;
}
.comfy-user-selection input,
.comfy-user-selection select {
background-color: var(--comfy-input-bg);
color: var(--input-text);
border: 0;
border-radius: 5px;
padding: 5px;
margin-top: 10px;
}
.comfy-user-selection input::placeholder {
color: var(--descrip-text);
opacity: 1;
}
.comfy-user-existing {
width: 100%;
}
.no-users .comfy-user-existing {
display: none;
}
.comfy-user-selection-inner .or-separator {
margin: 10px 0;
padding: 10px;
display: block;
text-align: center;
width: 100%;
color: var(--descrip-text);
}
.comfy-user-selection-inner .or-separator {
overflow: hidden;
text-align: center;
margin-left: -10px;
}
.comfy-user-selection-inner .or-separator::before,
.comfy-user-selection-inner .or-separator::after {
content: "";
background-color: var(--border-color);
position: relative;
height: 1px;
vertical-align: middle;
display: inline-block;
width: calc(50% - 20px);
top: -1px;
}
.comfy-user-selection-inner .or-separator::before {
right: 10px;
margin-left: -50%;
}
.comfy-user-selection-inner .or-separator::after {
left: 10px;
margin-right: -50%;
}
.comfy-user-selection-inner section {
width: 100%;
padding: 10px;
margin: -10px;
transition: background-color 0.2s;
}
.comfy-user-selection-inner section.selected {
background: var(--border-color);
border-radius: 5px;
}
.comfy-user-selection-inner footer {
display: flex;
flex-direction: column;
align-items: center;
margin-top: 20px;
}
.comfy-user-selection-inner .comfy-user-error {
color: var(--error-text);
margin-bottom: 10px;
}
.comfy-user-button-next {
font-size: 16px;
padding: 6px 10px;
width: 100px;
display: flex;
gap: 5px;
align-items: center;
justify-content: center;
}

114
web/scripts/ui/userSelection.js

@ -0,0 +1,114 @@
import { api } from "../api.js";
import { $el } from "../ui.js";
import { addStylesheet } from "../utils.js";
import { createSpinner } from "./spinner.js";
export class UserSelectionScreen {
async show(users, user) {
// This will rarely be hit so move the loading to on demand
await addStylesheet(import.meta.url);
const userSelection = document.getElementById("comfy-user-selection");
userSelection.style.display = "";
return new Promise((resolve) => {
const input = userSelection.getElementsByTagName("input")[0];
const select = userSelection.getElementsByTagName("select")[0];
const inputSection = input.closest("section");
const selectSection = select.closest("section");
const form = userSelection.getElementsByTagName("form")[0];
const error = userSelection.getElementsByClassName("comfy-user-error")[0];
const button = userSelection.getElementsByClassName("comfy-user-button-next")[0];
let inputActive = null;
input.addEventListener("focus", () => {
inputSection.classList.add("selected");
selectSection.classList.remove("selected");
inputActive = true;
});
select.addEventListener("focus", () => {
inputSection.classList.remove("selected");
selectSection.classList.add("selected");
inputActive = false;
select.style.color = "";
});
select.addEventListener("blur", () => {
if (!select.value) {
select.style.color = "var(--descrip-text)";
}
});
form.addEventListener("submit", async (e) => {
e.preventDefault();
if (inputActive == null) {
error.textContent = "Please enter a username or select an existing user.";
} else if (inputActive) {
const username = input.value.trim();
if (!username) {
error.textContent = "Please enter a username.";
return;
}
// Create new user
input.disabled = select.disabled = input.readonly = select.readonly = true;
const spinner = createSpinner();
button.prepend(spinner);
try {
const resp = await api.createUser(username);
if (resp.status >= 300) {
let message = "Error creating user: " + resp.status + " " + resp.statusText;
try {
const res = await resp.json();
if(res.error) {
message = res.error;
}
} catch (error) {
}
throw new Error(message);
}
resolve({ username, userId: await resp.json(), created: true });
} catch (err) {
spinner.remove();
error.textContent = err.message ?? err.statusText ?? err ?? "An unknown error occurred.";
input.disabled = select.disabled = input.readonly = select.readonly = false;
return;
}
} else if (!select.value) {
error.textContent = "Please select an existing user.";
return;
} else {
resolve({ username: users[select.value], userId: select.value, created: false });
}
});
if (user) {
const name = localStorage["Comfy.userName"];
if (name) {
input.value = name;
}
}
if (input.value) {
// Focus the input, do this separately as sometimes browsers like to fill in the value
input.focus();
}
const userIds = Object.keys(users ?? {});
if (userIds.length) {
for (const u of userIds) {
$el("option", { textContent: users[u], value: u, parent: select });
}
select.style.color = "var(--descrip-text)";
if (select.value) {
// Focus the select, do this separately as sometimes browsers like to fill in the value
select.focus();
}
} else {
userSelection.classList.add("no-users");
input.focus();
}
}).then((r) => {
userSelection.remove();
return r;
});
}
}

21
web/scripts/utils.js

@ -1,3 +1,5 @@
import { $el } from "./ui.js";
// Simple date formatter
const parts = {
d: (d) => d.getDate(),
@ -65,3 +67,22 @@ export function applyTextReplacements(app, value) {
return ((widget.value ?? "") + "").replaceAll(/\/|\\/g, "_");
});
}
export async function addStylesheet(urlOrFile, relativeTo) {
return new Promise((res, rej) => {
let url;
if (urlOrFile.endsWith(".js")) {
url = urlOrFile.substr(0, urlOrFile.length - 2) + "css";
} else {
url = new URL(urlOrFile, relativeTo ?? `${window.location.protocol}//${window.location.host}`).toString();
}
$el("link", {
parent: document.head,
rel: "stylesheet",
type: "text/css",
href: url,
onload: res,
onerror: rej,
});
});
}

2
web/style.css

@ -121,6 +121,7 @@ body {
width: 100%;
}
.comfy-btn,
.comfy-menu > button,
.comfy-menu-btns button,
.comfy-menu .comfy-list button,
@ -133,6 +134,7 @@ body {
margin-top: 2px;
}
.comfy-btn:hover:not(:disabled),
.comfy-menu > button:hover,
.comfy-menu-btns button:hover,
.comfy-menu .comfy-list button:hover,

Loading…
Cancel
Save