|
|
|
@ -348,17 +348,27 @@ def encode_adm(noise_augmentor, conds, batch_size, device):
|
|
|
|
|
if 'adm' in x[1]: |
|
|
|
|
adm_inputs = [] |
|
|
|
|
weights = [] |
|
|
|
|
noise_aug = [] |
|
|
|
|
adm_in = x[1]["adm"] |
|
|
|
|
for adm_c in adm_in: |
|
|
|
|
adm_cond = adm_c[0].image_embeds |
|
|
|
|
weight = adm_c[1] |
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([0], device=device)) |
|
|
|
|
noise_augment = adm_c[2] |
|
|
|
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) |
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device)) |
|
|
|
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight |
|
|
|
|
weights.append(weight) |
|
|
|
|
noise_aug.append(noise_augment) |
|
|
|
|
adm_inputs.append(adm_out) |
|
|
|
|
|
|
|
|
|
if len(noise_aug) > 1: |
|
|
|
|
adm_out = torch.stack(adm_inputs).sum(0) |
|
|
|
|
#TODO: Apply Noise to Embedding Mix |
|
|
|
|
#TODO: add a way to control this |
|
|
|
|
noise_augment = 0.05 |
|
|
|
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) |
|
|
|
|
print(noise_level) |
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) |
|
|
|
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) |
|
|
|
|
else: |
|
|
|
|
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device) |
|
|
|
|
x[1] = x[1].copy() |
|
|
|
|