Browse Source

Split optimization for VAE attention block.

pull/7/head
comfyanonymous 2 years ago
parent
commit
e8c499ddd4
  1. 58
      comfy/ldm/modules/diffusionmodules/model.py

58
comfy/ldm/modules/diffusionmodules/model.py

@ -186,18 +186,60 @@ class AttnBlock(nn.Module):
# compute attention # compute attention
b,c,h,w = q.shape b,c,h,w = q.shape
scale = (int(c)**(-0.5))
q = q.reshape(b,c,h*w) q = q.reshape(b,c,h*w)
q = q.permute(0,2,1) # b,hw,c q = q.permute(0,2,1) # b,hw,c
k = k.reshape(b,c,h*w) # b,c,hw k = k.reshape(b,c,h*w) # b,c,hw
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b,c,h*w) v = v.reshape(b,c,h*w)
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] r1 = torch.zeros_like(k, device=q.device)
h_ = h_.reshape(b,c,h,w)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
first_op_done = False
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = torch.bmm(q[:, i:end], k) * scale
first_op_done = True
torch.exp(s1, out=s1)
summed = torch.sum(s1, dim=2, keepdim=True)
s1 /= summed
s2 = s1.permute(0,2,1)
del s1
r1[:, :, i:end] = torch.bmm(v, s2)
del s2
break
except torch.cuda.OutOfMemoryError as e:
if first_op_done == False:
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again", steps)
else:
raise e
h_ = r1.reshape(b,c,h,w)
del r1
h_ = self.proj_out(h_) h_ = self.proj_out(h_)

Loading…
Cancel
Save