Browse Source

Make mask functions work with batches of masks and images.

pull/1600/head
comfyanonymous 1 year ago
parent
commit
d2cec6cdbf
  1. 36
      comfy_extras/nodes_mask.py

36
comfy_extras/nodes_mask.py

@ -144,8 +144,8 @@ class ImageColorToMask:
FUNCTION = "image_to_mask" FUNCTION = "image_to_mask"
def image_to_mask(self, image, color): def image_to_mask(self, image, color):
temp = (torch.clamp(image[0], 0, 1.0) * 255.0).round().to(torch.int) temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
temp = torch.bitwise_left_shift(temp[:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,1], 8) + temp[:,:,2] temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
mask = torch.where(temp == color, 255, 0).float() mask = torch.where(temp == color, 255, 0).float()
return (mask,) return (mask,)
@ -167,7 +167,7 @@ class SolidMask:
FUNCTION = "solid" FUNCTION = "solid"
def solid(self, value, width, height): def solid(self, value, width, height):
out = torch.full((height, width), value, dtype=torch.float32, device="cpu") out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu")
return (out,) return (out,)
class InvertMask: class InvertMask:
@ -209,7 +209,8 @@ class CropMask:
FUNCTION = "crop" FUNCTION = "crop"
def crop(self, mask, x, y, width, height): def crop(self, mask, x, y, width, height):
out = mask[y:y + height, x:x + width] mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
out = mask[:, y:y + height, x:x + width]
return (out,) return (out,)
class MaskComposite: class MaskComposite:
@ -232,27 +233,28 @@ class MaskComposite:
FUNCTION = "combine" FUNCTION = "combine"
def combine(self, destination, source, x, y, operation): def combine(self, destination, source, x, y, operation):
output = destination.clone() output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
left, top = (x, y,) left, top = (x, y,)
right, bottom = (min(left + source.shape[1], destination.shape[1]), min(top + source.shape[0], destination.shape[0])) right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2]))
visible_width, visible_height = (right - left, bottom - top,) visible_width, visible_height = (right - left, bottom - top,)
source_portion = source[:visible_height, :visible_width] source_portion = source[:visible_height, :visible_width]
destination_portion = destination[top:bottom, left:right] destination_portion = destination[top:bottom, left:right]
if operation == "multiply": if operation == "multiply":
output[top:bottom, left:right] = destination_portion * source_portion output[:, top:bottom, left:right] = destination_portion * source_portion
elif operation == "add": elif operation == "add":
output[top:bottom, left:right] = destination_portion + source_portion output[:, top:bottom, left:right] = destination_portion + source_portion
elif operation == "subtract": elif operation == "subtract":
output[top:bottom, left:right] = destination_portion - source_portion output[:, top:bottom, left:right] = destination_portion - source_portion
elif operation == "and": elif operation == "and":
output[top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float() output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float()
elif operation == "or": elif operation == "or":
output[top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float() output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float()
elif operation == "xor": elif operation == "xor":
output[top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float() output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float()
output = torch.clamp(output, 0.0, 1.0) output = torch.clamp(output, 0.0, 1.0)
@ -278,7 +280,7 @@ class FeatherMask:
FUNCTION = "feather" FUNCTION = "feather"
def feather(self, mask, left, top, right, bottom): def feather(self, mask, left, top, right, bottom):
output = mask.clone() output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
left = min(left, output.shape[1]) left = min(left, output.shape[1])
right = min(right, output.shape[1]) right = min(right, output.shape[1])
@ -287,19 +289,19 @@ class FeatherMask:
for x in range(left): for x in range(left):
feather_rate = (x + 1.0) / left feather_rate = (x + 1.0) / left
output[:, x] *= feather_rate output[:, :, x] *= feather_rate
for x in range(right): for x in range(right):
feather_rate = (x + 1) / right feather_rate = (x + 1) / right
output[:, -x] *= feather_rate output[:, :, -x] *= feather_rate
for y in range(top): for y in range(top):
feather_rate = (y + 1) / top feather_rate = (y + 1) / top
output[y, :] *= feather_rate output[:, y, :] *= feather_rate
for y in range(bottom): for y in range(bottom):
feather_rate = (y + 1) / bottom feather_rate = (y + 1) / bottom
output[-y, :] *= feather_rate output[:, -y, :] *= feather_rate
return (output,) return (output,)

Loading…
Cancel
Save