comfyanonymous
1 year ago
4 changed files with 533 additions and 527 deletions
@ -0,0 +1,483 @@
|
||||
import torch |
||||
import math |
||||
import comfy.utils |
||||
import comfy.sd |
||||
import comfy.model_management |
||||
import comfy.model_detection |
||||
|
||||
import comfy.cldm.cldm |
||||
import comfy.t2i_adapter.adapter |
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number): |
||||
current_batch_size = tensor.shape[0] |
||||
#print(current_batch_size, target_batch_size) |
||||
if current_batch_size == 1: |
||||
return tensor |
||||
|
||||
per_batch = target_batch_size // batched_number |
||||
tensor = tensor[:per_batch] |
||||
|
||||
if per_batch > tensor.shape[0]: |
||||
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0) |
||||
|
||||
current_batch_size = tensor.shape[0] |
||||
if current_batch_size == target_batch_size: |
||||
return tensor |
||||
else: |
||||
return torch.cat([tensor] * batched_number, dim=0) |
||||
|
||||
class ControlBase: |
||||
def __init__(self, device=None): |
||||
self.cond_hint_original = None |
||||
self.cond_hint = None |
||||
self.strength = 1.0 |
||||
self.timestep_percent_range = (1.0, 0.0) |
||||
self.timestep_range = None |
||||
|
||||
if device is None: |
||||
device = comfy.model_management.get_torch_device() |
||||
self.device = device |
||||
self.previous_controlnet = None |
||||
self.global_average_pooling = False |
||||
|
||||
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)): |
||||
self.cond_hint_original = cond_hint |
||||
self.strength = strength |
||||
self.timestep_percent_range = timestep_percent_range |
||||
return self |
||||
|
||||
def pre_run(self, model, percent_to_timestep_function): |
||||
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1])) |
||||
if self.previous_controlnet is not None: |
||||
self.previous_controlnet.pre_run(model, percent_to_timestep_function) |
||||
|
||||
def set_previous_controlnet(self, controlnet): |
||||
self.previous_controlnet = controlnet |
||||
return self |
||||
|
||||
def cleanup(self): |
||||
if self.previous_controlnet is not None: |
||||
self.previous_controlnet.cleanup() |
||||
if self.cond_hint is not None: |
||||
del self.cond_hint |
||||
self.cond_hint = None |
||||
self.timestep_range = None |
||||
|
||||
def get_models(self): |
||||
out = [] |
||||
if self.previous_controlnet is not None: |
||||
out += self.previous_controlnet.get_models() |
||||
return out |
||||
|
||||
def copy_to(self, c): |
||||
c.cond_hint_original = self.cond_hint_original |
||||
c.strength = self.strength |
||||
c.timestep_percent_range = self.timestep_percent_range |
||||
|
||||
def inference_memory_requirements(self, dtype): |
||||
if self.previous_controlnet is not None: |
||||
return self.previous_controlnet.inference_memory_requirements(dtype) |
||||
return 0 |
||||
|
||||
def control_merge(self, control_input, control_output, control_prev, output_dtype): |
||||
out = {'input':[], 'middle':[], 'output': []} |
||||
|
||||
if control_input is not None: |
||||
for i in range(len(control_input)): |
||||
key = 'input' |
||||
x = control_input[i] |
||||
if x is not None: |
||||
x *= self.strength |
||||
if x.dtype != output_dtype: |
||||
x = x.to(output_dtype) |
||||
out[key].insert(0, x) |
||||
|
||||
if control_output is not None: |
||||
for i in range(len(control_output)): |
||||
if i == (len(control_output) - 1): |
||||
key = 'middle' |
||||
index = 0 |
||||
else: |
||||
key = 'output' |
||||
index = i |
||||
x = control_output[i] |
||||
if x is not None: |
||||
if self.global_average_pooling: |
||||
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3]) |
||||
|
||||
x *= self.strength |
||||
if x.dtype != output_dtype: |
||||
x = x.to(output_dtype) |
||||
|
||||
out[key].append(x) |
||||
if control_prev is not None: |
||||
for x in ['input', 'middle', 'output']: |
||||
o = out[x] |
||||
for i in range(len(control_prev[x])): |
||||
prev_val = control_prev[x][i] |
||||
if i >= len(o): |
||||
o.append(prev_val) |
||||
elif prev_val is not None: |
||||
if o[i] is None: |
||||
o[i] = prev_val |
||||
else: |
||||
o[i] += prev_val |
||||
return out |
||||
|
||||
class ControlNet(ControlBase): |
||||
def __init__(self, control_model, global_average_pooling=False, device=None): |
||||
super().__init__(device) |
||||
self.control_model = control_model |
||||
self.control_model_wrapped = comfy.sd.ModelPatcher(self.control_model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) |
||||
self.global_average_pooling = global_average_pooling |
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number): |
||||
control_prev = None |
||||
if self.previous_controlnet is not None: |
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) |
||||
|
||||
if self.timestep_range is not None: |
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
||||
if control_prev is not None: |
||||
return control_prev |
||||
else: |
||||
return {} |
||||
|
||||
output_dtype = x_noisy.dtype |
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
||||
if self.cond_hint is not None: |
||||
del self.cond_hint |
||||
self.cond_hint = None |
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device) |
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) |
||||
|
||||
|
||||
context = torch.cat(cond['c_crossattn'], 1) |
||||
y = cond.get('c_adm', None) |
||||
if y is not None: |
||||
y = y.to(self.control_model.dtype) |
||||
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=t, context=context.to(self.control_model.dtype), y=y) |
||||
return self.control_merge(None, control, control_prev, output_dtype) |
||||
|
||||
def copy(self): |
||||
c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling) |
||||
self.copy_to(c) |
||||
return c |
||||
|
||||
def get_models(self): |
||||
out = super().get_models() |
||||
out.append(self.control_model_wrapped) |
||||
return out |
||||
|
||||
class ControlLoraOps: |
||||
class Linear(torch.nn.Module): |
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True, |
||||
device=None, dtype=None) -> None: |
||||
factory_kwargs = {'device': device, 'dtype': dtype} |
||||
super().__init__() |
||||
self.in_features = in_features |
||||
self.out_features = out_features |
||||
self.weight = None |
||||
self.up = None |
||||
self.down = None |
||||
self.bias = None |
||||
|
||||
def forward(self, input): |
||||
if self.up is not None: |
||||
return torch.nn.functional.linear(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias) |
||||
else: |
||||
return torch.nn.functional.linear(input, self.weight.to(input.device), self.bias) |
||||
|
||||
class Conv2d(torch.nn.Module): |
||||
def __init__( |
||||
self, |
||||
in_channels, |
||||
out_channels, |
||||
kernel_size, |
||||
stride=1, |
||||
padding=0, |
||||
dilation=1, |
||||
groups=1, |
||||
bias=True, |
||||
padding_mode='zeros', |
||||
device=None, |
||||
dtype=None |
||||
): |
||||
super().__init__() |
||||
self.in_channels = in_channels |
||||
self.out_channels = out_channels |
||||
self.kernel_size = kernel_size |
||||
self.stride = stride |
||||
self.padding = padding |
||||
self.dilation = dilation |
||||
self.transposed = False |
||||
self.output_padding = 0 |
||||
self.groups = groups |
||||
self.padding_mode = padding_mode |
||||
|
||||
self.weight = None |
||||
self.bias = None |
||||
self.up = None |
||||
self.down = None |
||||
|
||||
|
||||
def forward(self, input): |
||||
if self.up is not None: |
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device) + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), self.bias, self.stride, self.padding, self.dilation, self.groups) |
||||
else: |
||||
return torch.nn.functional.conv2d(input, self.weight.to(input.device), self.bias, self.stride, self.padding, self.dilation, self.groups) |
||||
|
||||
def conv_nd(self, dims, *args, **kwargs): |
||||
if dims == 2: |
||||
return self.Conv2d(*args, **kwargs) |
||||
else: |
||||
raise ValueError(f"unsupported dimensions: {dims}") |
||||
|
||||
|
||||
class ControlLora(ControlNet): |
||||
def __init__(self, control_weights, global_average_pooling=False, device=None): |
||||
ControlBase.__init__(self, device) |
||||
self.control_weights = control_weights |
||||
self.global_average_pooling = global_average_pooling |
||||
|
||||
def pre_run(self, model, percent_to_timestep_function): |
||||
super().pre_run(model, percent_to_timestep_function) |
||||
controlnet_config = model.model_config.unet_config.copy() |
||||
controlnet_config.pop("out_channels") |
||||
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1] |
||||
controlnet_config["operations"] = ControlLoraOps() |
||||
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) |
||||
dtype = model.get_dtype() |
||||
self.control_model.to(dtype) |
||||
self.control_model.to(comfy.model_management.get_torch_device()) |
||||
diffusion_model = model.diffusion_model |
||||
sd = diffusion_model.state_dict() |
||||
cm = self.control_model.state_dict() |
||||
|
||||
for k in sd: |
||||
weight = sd[k] |
||||
if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break. |
||||
key_split = k.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device. |
||||
op = comfy.utils.get_attr(diffusion_model, '.'.join(key_split[:-1])) |
||||
weight = op._hf_hook.weights_map[key_split[-1]] |
||||
|
||||
try: |
||||
comfy.utils.set_attr(self.control_model, k, weight) |
||||
except: |
||||
pass |
||||
|
||||
for k in self.control_weights: |
||||
if k not in {"lora_controlnet"}: |
||||
comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device())) |
||||
|
||||
def copy(self): |
||||
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling) |
||||
self.copy_to(c) |
||||
return c |
||||
|
||||
def cleanup(self): |
||||
del self.control_model |
||||
self.control_model = None |
||||
super().cleanup() |
||||
|
||||
def get_models(self): |
||||
out = ControlBase.get_models(self) |
||||
return out |
||||
|
||||
def inference_memory_requirements(self, dtype): |
||||
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype) |
||||
|
||||
def load_controlnet(ckpt_path, model=None): |
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) |
||||
if "lora_controlnet" in controlnet_data: |
||||
return ControlLora(controlnet_data) |
||||
|
||||
controlnet_config = None |
||||
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format |
||||
use_fp16 = comfy.model_management.should_use_fp16() |
||||
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, use_fp16) |
||||
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config) |
||||
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight" |
||||
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias" |
||||
|
||||
count = 0 |
||||
loop = True |
||||
while loop: |
||||
suffix = [".weight", ".bias"] |
||||
for s in suffix: |
||||
k_in = "controlnet_down_blocks.{}{}".format(count, s) |
||||
k_out = "zero_convs.{}.0{}".format(count, s) |
||||
if k_in not in controlnet_data: |
||||
loop = False |
||||
break |
||||
diffusers_keys[k_in] = k_out |
||||
count += 1 |
||||
|
||||
count = 0 |
||||
loop = True |
||||
while loop: |
||||
suffix = [".weight", ".bias"] |
||||
for s in suffix: |
||||
if count == 0: |
||||
k_in = "controlnet_cond_embedding.conv_in{}".format(s) |
||||
else: |
||||
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s) |
||||
k_out = "input_hint_block.{}{}".format(count * 2, s) |
||||
if k_in not in controlnet_data: |
||||
k_in = "controlnet_cond_embedding.conv_out{}".format(s) |
||||
loop = False |
||||
diffusers_keys[k_in] = k_out |
||||
count += 1 |
||||
|
||||
new_sd = {} |
||||
for k in diffusers_keys: |
||||
if k in controlnet_data: |
||||
new_sd[diffusers_keys[k]] = controlnet_data.pop(k) |
||||
|
||||
leftover_keys = controlnet_data.keys() |
||||
if len(leftover_keys) > 0: |
||||
print("leftover keys:", leftover_keys) |
||||
controlnet_data = new_sd |
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight' |
||||
pth = False |
||||
key = 'zero_convs.0.0.weight' |
||||
if pth_key in controlnet_data: |
||||
pth = True |
||||
key = pth_key |
||||
prefix = "control_model." |
||||
elif key in controlnet_data: |
||||
prefix = "" |
||||
else: |
||||
net = load_t2i_adapter(controlnet_data) |
||||
if net is None: |
||||
print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path) |
||||
return net |
||||
|
||||
if controlnet_config is None: |
||||
use_fp16 = comfy.model_management.should_use_fp16() |
||||
controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, use_fp16).unet_config |
||||
controlnet_config.pop("out_channels") |
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1] |
||||
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config) |
||||
|
||||
if pth: |
||||
if 'difference' in controlnet_data: |
||||
if model is not None: |
||||
comfy.model_management.load_models_gpu([model]) |
||||
model_sd = model.model_state_dict() |
||||
for x in controlnet_data: |
||||
c_m = "control_model." |
||||
if x.startswith(c_m): |
||||
sd_key = "diffusion_model.{}".format(x[len(c_m):]) |
||||
if sd_key in model_sd: |
||||
cd = controlnet_data[x] |
||||
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) |
||||
else: |
||||
print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.") |
||||
|
||||
class WeightsLoader(torch.nn.Module): |
||||
pass |
||||
w = WeightsLoader() |
||||
w.control_model = control_model |
||||
missing, unexpected = w.load_state_dict(controlnet_data, strict=False) |
||||
else: |
||||
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False) |
||||
print(missing, unexpected) |
||||
|
||||
if use_fp16: |
||||
control_model = control_model.half() |
||||
|
||||
global_average_pooling = False |
||||
if ckpt_path.endswith("_shuffle.pth") or ckpt_path.endswith("_shuffle.safetensors") or ckpt_path.endswith("_shuffle_fp16.safetensors"): #TODO: smarter way of enabling global_average_pooling |
||||
global_average_pooling = True |
||||
|
||||
control = ControlNet(control_model, global_average_pooling=global_average_pooling) |
||||
return control |
||||
|
||||
class T2IAdapter(ControlBase): |
||||
def __init__(self, t2i_model, channels_in, device=None): |
||||
super().__init__(device) |
||||
self.t2i_model = t2i_model |
||||
self.channels_in = channels_in |
||||
self.control_input = None |
||||
|
||||
def scale_image_to(self, width, height): |
||||
unshuffle_amount = self.t2i_model.unshuffle_amount |
||||
width = math.ceil(width / unshuffle_amount) * unshuffle_amount |
||||
height = math.ceil(height / unshuffle_amount) * unshuffle_amount |
||||
return width, height |
||||
|
||||
def get_control(self, x_noisy, t, cond, batched_number): |
||||
control_prev = None |
||||
if self.previous_controlnet is not None: |
||||
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) |
||||
|
||||
if self.timestep_range is not None: |
||||
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: |
||||
if control_prev is not None: |
||||
return control_prev |
||||
else: |
||||
return {} |
||||
|
||||
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]: |
||||
if self.cond_hint is not None: |
||||
del self.cond_hint |
||||
self.control_input = None |
||||
self.cond_hint = None |
||||
width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8) |
||||
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device) |
||||
if self.channels_in == 1 and self.cond_hint.shape[1] > 1: |
||||
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True) |
||||
if x_noisy.shape[0] != self.cond_hint.shape[0]: |
||||
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) |
||||
if self.control_input is None: |
||||
self.t2i_model.to(x_noisy.dtype) |
||||
self.t2i_model.to(self.device) |
||||
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype)) |
||||
self.t2i_model.cpu() |
||||
|
||||
control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input)) |
||||
mid = None |
||||
if self.t2i_model.xl == True: |
||||
mid = control_input[-1:] |
||||
control_input = control_input[:-1] |
||||
return self.control_merge(control_input, mid, control_prev, x_noisy.dtype) |
||||
|
||||
def copy(self): |
||||
c = T2IAdapter(self.t2i_model, self.channels_in) |
||||
self.copy_to(c) |
||||
return c |
||||
|
||||
def load_t2i_adapter(t2i_data): |
||||
keys = t2i_data.keys() |
||||
if 'adapter' in keys: |
||||
t2i_data = t2i_data['adapter'] |
||||
keys = t2i_data.keys() |
||||
if "body.0.in_conv.weight" in keys: |
||||
cin = t2i_data['body.0.in_conv.weight'].shape[1] |
||||
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) |
||||
elif 'conv_in.weight' in keys: |
||||
cin = t2i_data['conv_in.weight'].shape[1] |
||||
channel = t2i_data['conv_in.weight'].shape[0] |
||||
ksize = t2i_data['body.0.block2.weight'].shape[2] |
||||
use_conv = False |
||||
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys)) |
||||
if len(down_opts) > 0: |
||||
use_conv = True |
||||
xl = False |
||||
if cin == 256: |
||||
xl = True |
||||
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl) |
||||
else: |
||||
return None |
||||
missing, unexpected = model_ad.load_state_dict(t2i_data) |
||||
if len(missing) > 0: |
||||
print("t2i missing", missing) |
||||
|
||||
if len(unexpected) > 0: |
||||
print("t2i unexpected", unexpected) |
||||
|
||||
return T2IAdapter(model_ad, model_ad.input_channels) |
Loading…
Reference in new issue