|
|
@ -70,25 +70,29 @@ def cleanup_additional_models(models): |
|
|
|
if hasattr(m, 'cleanup'): |
|
|
|
if hasattr(m, 'cleanup'): |
|
|
|
m.cleanup() |
|
|
|
m.cleanup() |
|
|
|
|
|
|
|
|
|
|
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): |
|
|
|
def prepare_sampling(model, noise_shape, positive, negative, noise_mask): |
|
|
|
device = comfy.model_management.get_torch_device() |
|
|
|
device = model.load_device |
|
|
|
|
|
|
|
|
|
|
|
if noise_mask is not None: |
|
|
|
if noise_mask is not None: |
|
|
|
noise_mask = prepare_mask(noise_mask, noise.shape, device) |
|
|
|
noise_mask = prepare_mask(noise_mask, noise_shape, device) |
|
|
|
|
|
|
|
|
|
|
|
real_model = None |
|
|
|
real_model = None |
|
|
|
models, inference_memory = get_additional_models(positive, negative, model.model_dtype()) |
|
|
|
models, inference_memory = get_additional_models(positive, negative, model.model_dtype()) |
|
|
|
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise.shape[0] * noise.shape[2] * noise.shape[3]) + inference_memory) |
|
|
|
comfy.model_management.load_models_gpu([model] + models, comfy.model_management.batch_area_memory(noise_shape[0] * noise_shape[2] * noise_shape[3]) + inference_memory) |
|
|
|
real_model = model.model |
|
|
|
real_model = model.model |
|
|
|
|
|
|
|
|
|
|
|
noise = noise.to(device) |
|
|
|
positive_copy = broadcast_cond(positive, noise_shape[0], device) |
|
|
|
latent_image = latent_image.to(device) |
|
|
|
negative_copy = broadcast_cond(negative, noise_shape[0], device) |
|
|
|
|
|
|
|
return real_model, positive_copy, negative_copy, noise_mask, models |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
positive_copy = broadcast_cond(positive, noise.shape[0], device) |
|
|
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None): |
|
|
|
negative_copy = broadcast_cond(negative, noise.shape[0], device) |
|
|
|
real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
noise = noise.to(model.load_device) |
|
|
|
|
|
|
|
latent_image = latent_image.to(model.load_device) |
|
|
|
|
|
|
|
|
|
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) |
|
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) |
|
|
|
|
|
|
|
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) |
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed) |
|
|
|
samples = samples.cpu() |
|
|
|
samples = samples.cpu() |
|
|
|