Browse Source

Preview sampled images with TAESD

pull/713/head
space-nuko 1 year ago
parent
commit
b4f434ee66
  1. 65
      comfy/taesd/taesd.py
  2. 4
      comfy/utils.py
  3. 6
      main.py
  4. 115
      nodes.py
  5. 37
      server.py
  6. 1
      web/extensions/core/colorPalette.js
  7. 32
      web/scripts/api.js
  8. 54
      web/scripts/app.js

65
comfy/taesd/taesd.py

@ -0,0 +1,65 @@
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)
"""
import torch
import torch.nn as nn
def conv(n_in, n_out, **kwargs):
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
return torch.tanh(x / 3) * 3
class Block(nn.Module):
def __init__(self, n_in, n_out):
super().__init__()
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.fuse = nn.ReLU()
def forward(self, x):
return self.fuse(self.conv(x) + self.skip(x))
def Encoder():
return nn.Sequential(
conv(3, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 4),
)
def Decoder():
return nn.Sequential(
Clamp(), conv(4, 64), nn.ReLU(),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), conv(64, 3),
)
class TAESD(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
self.encoder = Encoder()
self.decoder = Decoder()
if encoder_path is not None:
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu"))
if decoder_path is not None:
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu"))
@staticmethod
def scale_latents(x):
"""raw latents -> [0, 1]"""
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
@staticmethod
def unscale_latents(x):
"""[0, 1] -> raw latents"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)

4
comfy/utils.py

@ -197,14 +197,14 @@ class ProgressBar:
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None):
def update_absolute(self, value, total=None, preview=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total)
self.hook(self.current, self.total, preview)
def update(self, value):
self.update_absolute(self.current + value)

6
main.py

@ -26,6 +26,7 @@ import yaml
import execution
import folder_paths
import server
from server import BinaryEventTypes
from nodes import init_custom_nodes
@ -40,8 +41,11 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
def hijack_progress(server):
def hook(value, total):
def hook(value, total, preview_bytes_jpeg):
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
if preview_bytes_jpeg is not None:
server.send_sync(BinaryEventTypes.PREVIEW_IMAGE, preview_bytes_jpeg, server.client_id)
pass
comfy.utils.set_progress_bar_global_hook(hook)
def cleanup_temp():

115
nodes.py

@ -7,6 +7,8 @@ import hashlib
import traceback
import math
import time
import struct
from io import BytesIO
from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
@ -22,6 +24,7 @@ import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
from comfy.taesd.taesd import TAESD
import comfy.clip_vision
@ -38,6 +41,7 @@ def interrupt_processing(value=True):
comfy.model_management.interrupt_current_processing(value)
MAX_RESOLUTION=8192
MAX_PREVIEW_RESOLUTION = 512
class CLIPTextEncode:
@classmethod
@ -171,6 +175,21 @@ class VAEDecodeTiled:
def decode(self, vae, samples):
return (vae.decode_tiled(samples["samples"]), )
class TAESDDecode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "taesd": ("TAESD", )}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "decode"
CATEGORY = "latent"
def decode(self, taesd, samples):
device = comfy.model_management.get_torch_device()
# [B, C, H, W] -> [B, H, W, C]
pixels = taesd.decoder(samples["samples"].to(device)).permute(0, 2, 3, 1).detach().clamp(0, 1)
return (pixels, )
class VAEEncode:
@classmethod
def INPUT_TYPES(s):
@ -248,6 +267,21 @@ class VAEEncodeForInpaint:
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
class TAESDEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "pixels": ("IMAGE", ), "taesd": ("TAESD", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent"
def encode(self, taesd, pixels):
device = comfy.model_management.get_torch_device()
# [B, H, W, C] -> [B, C, H, W]
samples = taesd.encoder(pixels.permute(0, 3, 1, 2).to(device)).to(device)
return ({"samples": samples}, )
class SaveLatent:
def __init__(self):
@ -464,6 +498,26 @@ class VAELoader:
vae = comfy.sd.VAE(ckpt_path=vae_path)
return (vae,)
class TAESDLoader:
@classmethod
def INPUT_TYPES(s):
model_list = folder_paths.get_filename_list("taesd")
return {"required": {
"encoder_name": (model_list, { "default": "taesd_encoder.pth" }),
"decoder_name": (model_list, { "default": "taesd_decoder.pth" })
}}
RETURN_TYPES = ("TAESD",)
FUNCTION = "load_taesd"
CATEGORY = "loaders"
def load_taesd(self, encoder_name, decoder_name):
device = comfy.model_management.get_torch_device()
encoder_path = folder_paths.get_full_path("taesd", encoder_name)
decoder_path = folder_paths.get_full_path("taesd", decoder_name)
taesd = TAESD(encoder_path, decoder_path).to(device)
return (taesd,)
class ControlNetLoader:
@classmethod
def INPUT_TYPES(s):
@ -931,7 +985,37 @@ class SetLatentNoiseMask:
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (s,)
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
def decode_latent_to_preview_image(taesd, device, preview_format, x0):
x_sample = taesd.decoder(x0.to(device))[0].detach()
x_sample = taesd.unscale_latents(x_sample) # returns value in [-2, 2]
x_sample = x_sample * 0.5
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
preview_image = Image.fromarray(x_sample)
if preview_image.size[0] > MAX_PREVIEW_RESOLUTION or preview_image.size[1] > MAX_PREVIEW_RESOLUTION:
preview_image.thumbnail((MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)
preview_type = 1
if preview_format == "JPEG":
preview_type = 1
elif preview_format == "PNG":
preview_type = 2
bytesIO = BytesIO()
header = struct.pack(">I", preview_type)
bytesIO.write(header)
preview_image.save(bytesIO, format=preview_format)
preview_bytes = bytesIO.getvalue()
return preview_bytes
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, taesd=None):
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
@ -945,9 +1029,16 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
preview_bytes = None
if taesd:
preview_bytes = decode_latent_to_preview_image(taesd, device, preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
@ -970,6 +1061,9 @@ class KSampler:
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"taesd": ("TAESD",)
}}
RETURN_TYPES = ("LATENT",)
@ -977,8 +1071,8 @@ class KSampler:
CATEGORY = "sampling"
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, taesd=None):
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, taesd=taesd)
class KSamplerAdvanced:
@classmethod
@ -997,6 +1091,9 @@ class KSamplerAdvanced:
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
},
"optional": {
"taesd": ("TAESD",)
}}
RETURN_TYPES = ("LATENT",)
@ -1004,14 +1101,14 @@ class KSamplerAdvanced:
CATEGORY = "sampling"
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0, taesd=None):
force_full_denoise = True
if return_with_leftover_noise == "enable":
force_full_denoise = False
disable_noise = False
if add_noise == "disable":
disable_noise = True
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise, taesd=taesd)
class SaveImage:
def __init__(self):
@ -1270,6 +1367,9 @@ NODE_CLASS_MAPPINGS = {
"VAEEncode": VAEEncode,
"VAEEncodeForInpaint": VAEEncodeForInpaint,
"VAELoader": VAELoader,
"TAESDDecode": TAESDDecode,
"TAESDEncode": TAESDEncode,
"TAESDLoader": TAESDLoader,
"EmptyLatentImage": EmptyLatentImage,
"LatentUpscale": LatentUpscale,
"LatentUpscaleBy": LatentUpscaleBy,
@ -1324,6 +1424,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"CheckpointLoader": "Load Checkpoint (With Config)",
"CheckpointLoaderSimple": "Load Checkpoint",
"VAELoader": "Load VAE",
"TAESDLoader": "Load TAESD",
"LoraLoader": "Load LoRA",
"CLIPLoader": "Load CLIP",
"ControlNetLoader": "Load ControlNet Model",
@ -1346,6 +1447,8 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"SetLatentNoiseMask": "Set Latent Noise Mask",
"VAEDecode": "VAE Decode",
"VAEEncode": "VAE Encode",
"TAESDDecode": "TAESD Decode",
"TAESDEncode": "TAESD Encode",
"LatentRotate": "Rotate Latent",
"LatentFlip": "Flip Latent",
"LatentCrop": "Crop Latent",

37
server.py

@ -7,6 +7,7 @@ import execution
import uuid
import json
import glob
import struct
from PIL import Image
from io import BytesIO
@ -25,6 +26,11 @@ from comfy.cli_args import args
import comfy.utils
import comfy.model_management
class BinaryEventTypes:
PREVIEW_IMAGE = 1
@web.middleware
async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request)
@ -457,16 +463,37 @@ class PromptServer():
return prompt_info
async def send(self, event, data, sid=None):
message = {"type": event, "data": data}
if isinstance(data, (bytes, bytearray)):
await self.send_bytes(event, data, sid)
else:
await self.send_json(event, data, sid)
def encode_bytes(self, event, data):
if not isinstance(event, int):
raise RuntimeError(f"Binary event types must be integers, got {event}")
packed = struct.pack(">I", event)
message = bytearray(packed)
message.extend(data)
return message
if isinstance(message, str) == False:
message = json.dumps(message)
async def send_bytes(self, event, data, sid=None):
message = self.encode_bytes(event, data)
if sid is None:
for ws in self.sockets.values():
await ws.send_bytes(message)
elif sid in self.sockets:
await self.sockets[sid].send_bytes(message)
async def send_json(self, event, data, sid=None):
message = {"type": event, "data": data}
if sid is None:
for ws in self.sockets.values():
await ws.send_str(message)
await ws.send_json(message)
elif sid in self.sockets:
await self.sockets[sid].send_str(message)
await self.sockets[sid].send_json(message)
def send_sync(self, event, data, sid=None):
self.loop.call_soon_threadsafe(

1
web/extensions/core/colorPalette.js

@ -21,6 +21,7 @@ const colorPalettes = {
"MODEL": "#B39DDB", // light lavender-purple
"STYLE_MODEL": "#C2FFAE", // light green-yellow
"VAE": "#FF6E6E", // bright red
"TAESD": "#DCC274", // cheesecake
},
"litegraph_base": {
"NODE_TITLE_COLOR": "#999",

32
web/scripts/api.js

@ -42,6 +42,7 @@ class ComfyApi extends EventTarget {
this.socket = new WebSocket(
`ws${window.location.protocol === "https:" ? "s" : ""}://${location.host}/ws${existingSession}`
);
this.socket.binaryType = "arraybuffer";
this.socket.addEventListener("open", () => {
opened = true;
@ -70,6 +71,32 @@ class ComfyApi extends EventTarget {
this.socket.addEventListener("message", (event) => {
try {
if (event.data instanceof ArrayBuffer) {
const view = new DataView(event.data);
const eventType = view.getUint32(0);
const buffer = event.data.slice(4);
console.error("BINARY", eventType);
switch (eventType) {
case 1:
const view2 = new DataView(event.data);
const imageType = view2.getUint32(0)
let imageMime
switch (imageType) {
case 1:
default:
imageMime = "image/jpeg";
break;
case 2:
imageMime = "image/png"
}
const jpegBlob = new Blob([buffer.slice(4)], { type: imageMime });
this.dispatchEvent(new CustomEvent("b_preview", { detail: jpegBlob }));
break;
default:
throw new Error(`Unknown binary websocket message of type ${eventType}`);
}
}
else {
const msg = JSON.parse(event.data);
switch (msg.type) {
case "status":
@ -98,11 +125,12 @@ class ComfyApi extends EventTarget {
if (this.#registered.has(msg.type)) {
this.dispatchEvent(new CustomEvent(msg.type, { detail: msg.data }));
} else {
throw new Error("Unknown message type");
throw new Error(`Unknown message type ${msg.type}`);
}
}
}
} catch (error) {
console.warn("Unhandled message:", event.data);
console.warn("Unhandled message:", event.data, error);
}
});
}

54
web/scripts/app.js

@ -44,6 +44,12 @@ export class ComfyApp {
*/
this.nodeOutputs = {};
/**
* Stores the preview image data for each node
* @type {Record<string, Image>}
*/
this.nodePreviewImages = {};
/**
* If the shift key on the keyboard is pressed
* @type {boolean}
@ -367,29 +373,52 @@ export class ComfyApp {
node.prototype.onDrawBackground = function (ctx) {
if (!this.flags.collapsed) {
let imgURLs = []
let imagesChanged = false
const output = app.nodeOutputs[this.id + ""];
if (output && output.images) {
if (this.images !== output.images) {
this.images = output.images;
this.imgs = null;
imagesChanged = true;
imgURLs = imgURLs.concat(output.images.map(params => {
return "/view?" + new URLSearchParams(src).toString() + app.getPreviewFormatParam();
}))
}
}
const preview = app.nodePreviewImages[this.id + ""]
if (this.preview !== preview) {
this.preview = preview
imagesChanged = true;
if (preview != null) {
imgURLs.push(preview);
}
}
if (imagesChanged) {
this.imageIndex = null;
if (imgURLs.length > 0) {
Promise.all(
output.images.map((src) => {
imgURLs.map((src) => {
return new Promise((r) => {
const img = new Image();
img.onload = () => r(img);
img.onerror = () => r(null);
img.src = "/view?" + new URLSearchParams(src).toString() + app.getPreviewFormatParam();
img.src = src
});
})
).then((imgs) => {
if (this.images === output.images) {
if ((!output || this.images === output.images) && (!preview || this.preview === preview)) {
this.imgs = imgs.filter(Boolean);
this.setSizeForImage?.();
app.graph.setDirtyCanvas(true);
}
});
}
else {
this.imgs = null;
}
}
if (this.imgs && this.imgs.length) {
@ -901,17 +930,20 @@ export class ComfyApp {
this.progress = null;
this.runningNodeId = detail;
this.graph.setDirtyCanvas(true, false);
delete this.nodePreviewImages[this.runningNodeId]
});
api.addEventListener("executed", ({ detail }) => {
this.nodeOutputs[detail.node] = detail.output;
const node = this.graph.getNodeById(detail.node);
if (node?.onExecuted) {
if (node) {
if (node.onExecuted)
node.onExecuted(detail.output);
}
});
api.addEventListener("execution_start", ({ detail }) => {
this.runningNodeId = null;
this.lastExecutionError = null
});
@ -922,6 +954,16 @@ export class ComfyApp {
this.canvas.draw(true, true);
});
api.addEventListener("b_preview", ({ detail }) => {
const id = this.runningNodeId
if (id == null)
return;
const blob = detail
const blobUrl = URL.createObjectURL(blob)
this.nodePreviewImages[id] = [blobUrl]
});
api.init();
}
@ -1465,8 +1507,10 @@ export class ComfyApp {
*/
clean() {
this.nodeOutputs = {};
this.nodePreviewImages = {}
this.lastPromptError = null;
this.lastExecutionError = null;
this.runningNodeId = null;
}
}

Loading…
Cancel
Save