comfyanonymous
1 year ago
8 changed files with 107 additions and 100 deletions
@ -0,0 +1,95 @@ |
|||||||
|
import torch |
||||||
|
from PIL import Image, ImageOps |
||||||
|
from io import BytesIO |
||||||
|
import struct |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from comfy.cli_args import args, LatentPreviewMethod |
||||||
|
from comfy.taesd.taesd import TAESD |
||||||
|
import folder_paths |
||||||
|
|
||||||
|
MAX_PREVIEW_RESOLUTION = 512 |
||||||
|
|
||||||
|
class LatentPreviewer: |
||||||
|
def decode_latent_to_preview(self, x0): |
||||||
|
pass |
||||||
|
|
||||||
|
def decode_latent_to_preview_image(self, preview_format, x0): |
||||||
|
preview_image = self.decode_latent_to_preview(x0) |
||||||
|
preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS) |
||||||
|
|
||||||
|
preview_type = 1 |
||||||
|
if preview_format == "JPEG": |
||||||
|
preview_type = 1 |
||||||
|
elif preview_format == "PNG": |
||||||
|
preview_type = 2 |
||||||
|
|
||||||
|
bytesIO = BytesIO() |
||||||
|
header = struct.pack(">I", preview_type) |
||||||
|
bytesIO.write(header) |
||||||
|
preview_image.save(bytesIO, format=preview_format, quality=95) |
||||||
|
preview_bytes = bytesIO.getvalue() |
||||||
|
return preview_bytes |
||||||
|
|
||||||
|
class TAESDPreviewerImpl(LatentPreviewer): |
||||||
|
def __init__(self, taesd): |
||||||
|
self.taesd = taesd |
||||||
|
|
||||||
|
def decode_latent_to_preview(self, x0): |
||||||
|
x_sample = self.taesd.decoder(x0)[0].detach() |
||||||
|
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2] |
||||||
|
x_sample = x_sample.sub(0.5).mul(2) |
||||||
|
|
||||||
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) |
||||||
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) |
||||||
|
x_sample = x_sample.astype(np.uint8) |
||||||
|
|
||||||
|
preview_image = Image.fromarray(x_sample) |
||||||
|
return preview_image |
||||||
|
|
||||||
|
|
||||||
|
class Latent2RGBPreviewer(LatentPreviewer): |
||||||
|
def __init__(self): |
||||||
|
self.latent_rgb_factors = torch.tensor([ |
||||||
|
# R G B |
||||||
|
[0.298, 0.207, 0.208], # L1 |
||||||
|
[0.187, 0.286, 0.173], # L2 |
||||||
|
[-0.158, 0.189, 0.264], # L3 |
||||||
|
[-0.184, -0.271, -0.473], # L4 |
||||||
|
], device="cpu") |
||||||
|
|
||||||
|
def decode_latent_to_preview(self, x0): |
||||||
|
latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors |
||||||
|
|
||||||
|
latents_ubyte = (((latent_image + 1) / 2) |
||||||
|
.clamp(0, 1) # change scale from -1..1 to 0..1 |
||||||
|
.mul(0xFF) # to 0..255 |
||||||
|
.byte()).cpu() |
||||||
|
|
||||||
|
return Image.fromarray(latents_ubyte.numpy()) |
||||||
|
|
||||||
|
|
||||||
|
def get_previewer(device): |
||||||
|
previewer = None |
||||||
|
method = args.preview_method |
||||||
|
if method != LatentPreviewMethod.NoPreviews: |
||||||
|
# TODO previewer methods |
||||||
|
taesd_decoder_path = folder_paths.get_full_path("vae_approx", "taesd_decoder.pth") |
||||||
|
|
||||||
|
if method == LatentPreviewMethod.Auto: |
||||||
|
method = LatentPreviewMethod.Latent2RGB |
||||||
|
if taesd_decoder_path: |
||||||
|
method = LatentPreviewMethod.TAESD |
||||||
|
|
||||||
|
if method == LatentPreviewMethod.TAESD: |
||||||
|
if taesd_decoder_path: |
||||||
|
taesd = TAESD(None, taesd_decoder_path).to(device) |
||||||
|
previewer = TAESDPreviewerImpl(taesd) |
||||||
|
else: |
||||||
|
print("Warning: TAESD previews enabled, but could not find models/vae_approx/taesd_decoder.pth") |
||||||
|
|
||||||
|
if previewer is None: |
||||||
|
previewer = Latent2RGBPreviewer() |
||||||
|
return previewer |
||||||
|
|
||||||
|
|
Loading…
Reference in new issue