Browse Source

Merge branch 'taesd-preview' of https://github.com/space-nuko/ComfyUI

pull/743/head
comfyanonymous 1 year ago
parent
commit
081134f5c8
  1. 5
      README.md
  2. 38
      comfy/cli_args.py
  3. 65
      comfy/taesd/taesd.py
  4. 7
      comfy/utils.py
  5. 1
      folder_paths.py
  6. 5
      main.py
  7. 0
      models/taesd/put_taesd_encoder_pth_and_taesd_decoder_pth_here
  8. 104
      nodes.py
  9. 37
      server.py
  10. 1
      web/extensions/core/colorPalette.js
  11. 83
      web/scripts/api.js
  12. 58
      web/scripts/app.js

5
README.md

@ -29,6 +29,7 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
- Latent previews with [TAESD](https://github.com/madebyollin/taesd)
- Starts up very fast.
- Works fully offline: will never download anything.
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
@ -181,6 +182,10 @@ You can set this command line setting to disable the upcasting to fp32 in some c
```--dont-upcast-attention```
## How to show high-quality previews?
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_encoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_encoder.pth) and [taesd_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth) models and place them in the `models/taesd` folder. Once they're installed, restart ComfyUI to enable high-quality previews.
## Support and dev channel
[Matrix space: #comfyui_space:matrix.org](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) (it's like discord but open source).

38
comfy/cli_args.py

@ -1,4 +1,35 @@
import argparse
import enum
class EnumAction(argparse.Action):
"""
Argparse action for handling Enums
"""
def __init__(self, **kwargs):
# Pop off the type value
enum_type = kwargs.pop("type", None)
# Ensure an Enum subclass is provided
if enum_type is None:
raise ValueError("type must be assigned an Enum when using EnumAction")
if not issubclass(enum_type, enum.Enum):
raise TypeError("type must be an Enum when using EnumAction")
# Generate choices from the Enum
choices = tuple(e.value for e in enum_type)
kwargs.setdefault("choices", choices)
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
super(EnumAction, self).__init__(**kwargs)
self._enum = enum_type
def __call__(self, parser, namespace, values, option_string=None):
# Convert value back into an Enum
value = self._enum(values)
setattr(namespace, self.dest, value)
parser = argparse.ArgumentParser()
@ -13,6 +44,13 @@ parser.add_argument("--dont-upcast-attention", action="store_true", help="Disabl
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
class LatentPreviewMethod(enum.Enum):
Auto = "auto"
Latent2RGB = "latent2rgb"
TAESD = "taesd"
parser.add_argument("--disable-previews", action="store_true", help="Disable showing node previews.")
parser.add_argument("--default-preview-method", type=str, default=LatentPreviewMethod.Auto, metavar="PREVIEW_METHOD", help="Default preview method for sampler nodes.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")

65
comfy/taesd/taesd.py

@ -0,0 +1,65 @@
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Stable Diffusion
(DNN for encoding / decoding SD's latent space)
"""
import torch
import torch.nn as nn
def conv(n_in, n_out, **kwargs):
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)
class Clamp(nn.Module):
def forward(self, x):
return torch.tanh(x / 3) * 3
class Block(nn.Module):
def __init__(self, n_in, n_out):
super().__init__()
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out))
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
self.fuse = nn.ReLU()
def forward(self, x):
return self.fuse(self.conv(x) + self.skip(x))
def Encoder():
return nn.Sequential(
conv(3, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 4),
)
def Decoder():
return nn.Sequential(
Clamp(), conv(4, 64), nn.ReLU(),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), conv(64, 3),
)
class TAESD(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
self.encoder = Encoder()
self.decoder = Decoder()
if encoder_path is not None:
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu"))
if decoder_path is not None:
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu"))
@staticmethod
def scale_latents(x):
"""raw latents -> [0, 1]"""
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1)
@staticmethod
def unscale_latents(x):
"""[0, 1] -> raw latents"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)

7
comfy/utils.py

@ -1,6 +1,7 @@
import torch
import math
import struct
import comfy.model_management
def load_torch_file(ckpt, safe_load=False):
if ckpt.lower().endswith(".safetensors"):
@ -166,6 +167,8 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
for y in range(0, s.shape[2], tile_y - overlap):
for x in range(0, s.shape[3], tile_x - overlap):
comfy.model_management.throw_exception_if_processing_interrupted()
s_in = s[:,:,y:y+tile_y,x:x+tile_x]
ps = function(s_in).cpu()
@ -197,14 +200,14 @@ class ProgressBar:
self.current = 0
self.hook = PROGRESS_BAR_HOOK
def update_absolute(self, value, total=None):
def update_absolute(self, value, total=None, preview=None):
if total is not None:
self.total = total
if value > self.total:
value = self.total
self.current = value
if self.hook is not None:
self.hook(self.current, self.total)
self.hook(self.current, self.total, preview)
def update(self, value):
self.update_absolute(self.current + value)

1
folder_paths.py

@ -18,6 +18,7 @@ folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision"
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
folder_names_and_paths["taesd"] = ([os.path.join(models_dir, "taesd")], supported_pt_extensions)
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions)

5
main.py

@ -26,6 +26,7 @@ import yaml
import execution
import folder_paths
import server
from server import BinaryEventTypes
from nodes import init_custom_nodes
@ -40,8 +41,10 @@ async def run(server, address='', port=8188, verbose=True, call_on_start=None):
await asyncio.gather(server.start(address, port, verbose, call_on_start), server.publish_loop())
def hijack_progress(server):
def hook(value, total):
def hook(value, total, preview_image_bytes):
server.send_sync("progress", { "value": value, "max": total}, server.client_id)
if preview_image_bytes is not None:
server.send_sync(BinaryEventTypes.PREVIEW_IMAGE, preview_image_bytes, server.client_id)
comfy.utils.set_progress_bar_global_hook(hook)
def cleanup_temp():

0
models/taesd/put_taesd_encoder_pth_and_taesd_decoder_pth_here

104
nodes.py

@ -7,6 +7,8 @@ import hashlib
import traceback
import math
import time
import struct
from io import BytesIO
from PIL import Image, ImageOps
from PIL.PngImagePlugin import PngInfo
@ -22,6 +24,8 @@ import comfy.samplers
import comfy.sample
import comfy.sd
import comfy.utils
from comfy.cli_args import args, LatentPreviewMethod
from comfy.taesd.taesd import TAESD
import comfy.clip_vision
@ -31,6 +35,32 @@ import importlib
import folder_paths
class LatentPreviewer:
def decode_latent_to_preview(self, device, x0):
pass
class Latent2RGBPreviewer(LatentPreviewer):
def __init__(self):
self.latent_rgb_factors = torch.tensor([
# R G B
[0.298, 0.207, 0.208], # L1
[0.187, 0.286, 0.173], # L2
[-0.158, 0.189, 0.264], # L3
[-0.184, -0.271, -0.473], # L4
], device="cpu")
def decode_latent_to_preview(self, device, x0):
latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors
latents_ubyte = (((latent_image + 1) / 2)
.clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
.byte()).cpu()
return Image.fromarray(latents_ubyte.numpy())
def before_node_execution():
comfy.model_management.throw_exception_if_processing_interrupted()
@ -38,6 +68,7 @@ def interrupt_processing(value=True):
comfy.model_management.interrupt_current_processing(value)
MAX_RESOLUTION=8192
MAX_PREVIEW_RESOLUTION = 512
class CLIPTextEncode:
@classmethod
@ -248,6 +279,21 @@ class VAEEncodeForInpaint:
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
class TAESDPreviewerImpl(LatentPreviewer):
def __init__(self, taesd):
self.taesd = taesd
def decode_latent_to_preview(self, device, x0):
x_sample = self.taesd.decoder(x0.to(device))[0].detach()
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2]
x_sample = x_sample.sub(0.5).mul(2)
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
preview_image = Image.fromarray(x_sample)
return preview_image
class SaveLatent:
def __init__(self):
@ -931,6 +977,26 @@ class SetLatentNoiseMask:
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (s,)
def decode_latent_to_preview_image(previewer, device, preview_format, x0):
preview_image = previewer.decode_latent_to_preview(device, x0)
preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)
preview_type = 1
if preview_format == "JPEG":
preview_type = 1
elif preview_format == "PNG":
preview_type = 2
bytesIO = BytesIO()
header = struct.pack(">I", preview_type)
bytesIO.write(header)
preview_image.save(bytesIO, format=preview_format)
preview_bytes = bytesIO.getvalue()
return preview_bytes
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
device = comfy.model_management.get_torch_device()
latent_image = latent["samples"]
@ -945,9 +1011,39 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = None
if not args.disable_previews:
# TODO previewer methods
taesd_encoder_path = folder_paths.get_full_path("taesd", "taesd_encoder.pth")
taesd_decoder_path = folder_paths.get_full_path("taesd", "taesd_decoder.pth")
method = args.default_preview_method
if method == LatentPreviewMethod.Auto:
method = LatentPreviewMethod.Latent2RGB
if taesd_encoder_path and taesd_encoder_path:
method = LatentPreviewMethod.TAESD
if method == LatentPreviewMethod.TAESD:
if taesd_encoder_path and taesd_encoder_path:
taesd = TAESD(taesd_encoder_path, taesd_decoder_path).to(device)
previewer = TAESDPreviewerImpl(taesd)
else:
print("Warning: TAESD previews enabled, but could not find models/taesd/taesd_encoder.pth and models/taesd/taesd_decoder.pth")
if previewer is None:
previewer = Latent2RGBPreviewer()
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
pbar.update_absolute(step + 1, total_steps)
preview_bytes = None
if previewer:
preview_bytes = decode_latent_to_preview_image(previewer, device, preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
@ -970,7 +1066,8 @@ class KSampler:
"negative": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
}}
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"
@ -997,7 +1094,8 @@ class KSamplerAdvanced:
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
"return_with_leftover_noise": (["disable", "enable"], ),
}}
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "sample"

37
server.py

@ -7,6 +7,7 @@ import execution
import uuid
import json
import glob
import struct
from PIL import Image
from io import BytesIO
@ -25,6 +26,11 @@ from comfy.cli_args import args
import comfy.utils
import comfy.model_management
class BinaryEventTypes:
PREVIEW_IMAGE = 1
@web.middleware
async def cache_control(request: web.Request, handler):
response: web.Response = await handler(request)
@ -457,16 +463,37 @@ class PromptServer():
return prompt_info
async def send(self, event, data, sid=None):
if isinstance(data, (bytes, bytearray)):
await self.send_bytes(event, data, sid)
else:
await self.send_json(event, data, sid)
def encode_bytes(self, event, data):
if not isinstance(event, int):
raise RuntimeError(f"Binary event types must be integers, got {event}")
packed = struct.pack(">I", event)
message = bytearray(packed)
message.extend(data)
return message
async def send_bytes(self, event, data, sid=None):
message = self.encode_bytes(event, data)
if sid is None:
for ws in self.sockets.values():
await ws.send_bytes(message)
elif sid in self.sockets:
await self.sockets[sid].send_bytes(message)
async def send_json(self, event, data, sid=None):
message = {"type": event, "data": data}
if isinstance(message, str) == False:
message = json.dumps(message)
if sid is None:
for ws in self.sockets.values():
await ws.send_str(message)
await ws.send_json(message)
elif sid in self.sockets:
await self.sockets[sid].send_str(message)
await self.sockets[sid].send_json(message)
def send_sync(self, event, data, sid=None):
self.loop.call_soon_threadsafe(

1
web/extensions/core/colorPalette.js

@ -21,6 +21,7 @@ const colorPalettes = {
"MODEL": "#B39DDB", // light lavender-purple
"STYLE_MODEL": "#C2FFAE", // light green-yellow
"VAE": "#FF6E6E", // bright red
"TAESD": "#DCC274", // cheesecake
},
"litegraph_base": {
"NODE_TITLE_COLOR": "#999",

83
web/scripts/api.js

@ -42,6 +42,7 @@ class ComfyApi extends EventTarget {
this.socket = new WebSocket(
`ws${window.location.protocol === "https:" ? "s" : ""}://${location.host}/ws${existingSession}`
);
this.socket.binaryType = "arraybuffer";
this.socket.addEventListener("open", () => {
opened = true;
@ -70,39 +71,65 @@ class ComfyApi extends EventTarget {
this.socket.addEventListener("message", (event) => {
try {
const msg = JSON.parse(event.data);
switch (msg.type) {
case "status":
if (msg.data.sid) {
this.clientId = msg.data.sid;
window.name = this.clientId;
if (event.data instanceof ArrayBuffer) {
const view = new DataView(event.data);
const eventType = view.getUint32(0);
const buffer = event.data.slice(4);
switch (eventType) {
case 1:
const view2 = new DataView(event.data);
const imageType = view2.getUint32(0)
let imageMime
switch (imageType) {
case 1:
default:
imageMime = "image/jpeg";
break;
case 2:
imageMime = "image/png"
}
this.dispatchEvent(new CustomEvent("status", { detail: msg.data.status }));
break;
case "progress":
this.dispatchEvent(new CustomEvent("progress", { detail: msg.data }));
break;
case "executing":
this.dispatchEvent(new CustomEvent("executing", { detail: msg.data.node }));
break;
case "executed":
this.dispatchEvent(new CustomEvent("executed", { detail: msg.data }));
break;
case "execution_start":
this.dispatchEvent(new CustomEvent("execution_start", { detail: msg.data }));
break;
case "execution_error":
this.dispatchEvent(new CustomEvent("execution_error", { detail: msg.data }));
const imageBlob = new Blob([buffer.slice(4)], { type: imageMime });
this.dispatchEvent(new CustomEvent("b_preview", { detail: imageBlob }));
break;
default:
if (this.#registered.has(msg.type)) {
this.dispatchEvent(new CustomEvent(msg.type, { detail: msg.data }));
} else {
throw new Error("Unknown message type");
}
throw new Error(`Unknown binary websocket message of type ${eventType}`);
}
}
else {
const msg = JSON.parse(event.data);
switch (msg.type) {
case "status":
if (msg.data.sid) {
this.clientId = msg.data.sid;
window.name = this.clientId;
}
this.dispatchEvent(new CustomEvent("status", { detail: msg.data.status }));
break;
case "progress":
this.dispatchEvent(new CustomEvent("progress", { detail: msg.data }));
break;
case "executing":
this.dispatchEvent(new CustomEvent("executing", { detail: msg.data.node }));
break;
case "executed":
this.dispatchEvent(new CustomEvent("executed", { detail: msg.data }));
break;
case "execution_start":
this.dispatchEvent(new CustomEvent("execution_start", { detail: msg.data }));
break;
case "execution_error":
this.dispatchEvent(new CustomEvent("execution_error", { detail: msg.data }));
break;
default:
if (this.#registered.has(msg.type)) {
this.dispatchEvent(new CustomEvent(msg.type, { detail: msg.data }));
} else {
throw new Error(`Unknown message type ${msg.type}`);
}
}
}
} catch (error) {
console.warn("Unhandled message:", event.data);
console.warn("Unhandled message:", event.data, error);
}
});
}

58
web/scripts/app.js

@ -44,6 +44,12 @@ export class ComfyApp {
*/
this.nodeOutputs = {};
/**
* Stores the preview image data for each node
* @type {Record<string, Image>}
*/
this.nodePreviewImages = {};
/**
* If the shift key on the keyboard is pressed
* @type {boolean}
@ -367,29 +373,52 @@ export class ComfyApp {
node.prototype.onDrawBackground = function (ctx) {
if (!this.flags.collapsed) {
let imgURLs = []
let imagesChanged = false
const output = app.nodeOutputs[this.id + ""];
if (output && output.images) {
if (this.images !== output.images) {
this.images = output.images;
this.imgs = null;
this.imageIndex = null;
imagesChanged = true;
imgURLs = imgURLs.concat(output.images.map(params => {
return "/view?" + new URLSearchParams(params).toString() + app.getPreviewFormatParam();
}))
}
}
const preview = app.nodePreviewImages[this.id + ""]
if (this.preview !== preview) {
this.preview = preview
imagesChanged = true;
if (preview != null) {
imgURLs.push(preview);
}
}
if (imagesChanged) {
this.imageIndex = null;
if (imgURLs.length > 0) {
Promise.all(
output.images.map((src) => {
imgURLs.map((src) => {
return new Promise((r) => {
const img = new Image();
img.onload = () => r(img);
img.onerror = () => r(null);
img.src = "/view?" + new URLSearchParams(src).toString() + app.getPreviewFormatParam();
img.src = src
});
})
).then((imgs) => {
if (this.images === output.images) {
if ((!output || this.images === output.images) && (!preview || this.preview === preview)) {
this.imgs = imgs.filter(Boolean);
this.setSizeForImage?.();
app.graph.setDirtyCanvas(true);
}
});
}
else {
this.imgs = null;
}
}
if (this.imgs && this.imgs.length) {
@ -901,17 +930,20 @@ export class ComfyApp {
this.progress = null;
this.runningNodeId = detail;
this.graph.setDirtyCanvas(true, false);
delete this.nodePreviewImages[this.runningNodeId]
});
api.addEventListener("executed", ({ detail }) => {
this.nodeOutputs[detail.node] = detail.output;
const node = this.graph.getNodeById(detail.node);
if (node?.onExecuted) {
node.onExecuted(detail.output);
if (node) {
if (node.onExecuted)
node.onExecuted(detail.output);
}
});
api.addEventListener("execution_start", ({ detail }) => {
this.runningNodeId = null;
this.lastExecutionError = null
});
@ -922,6 +954,16 @@ export class ComfyApp {
this.canvas.draw(true, true);
});
api.addEventListener("b_preview", ({ detail }) => {
const id = this.runningNodeId
if (id == null)
return;
const blob = detail
const blobUrl = URL.createObjectURL(blob)
this.nodePreviewImages[id] = [blobUrl]
});
api.init();
}
@ -1465,8 +1507,10 @@ export class ComfyApp {
*/
clean() {
this.nodeOutputs = {};
this.nodePreviewImages = {}
this.lastPromptError = null;
this.lastExecutionError = null;
this.runningNodeId = null;
}
}

Loading…
Cancel
Save