comfyanonymous
1 year ago
12 changed files with 358 additions and 46 deletions
@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python3 |
||||
""" |
||||
Tiny AutoEncoder for Stable Diffusion |
||||
(DNN for encoding / decoding SD's latent space) |
||||
""" |
||||
import torch |
||||
import torch.nn as nn |
||||
|
||||
def conv(n_in, n_out, **kwargs): |
||||
return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs) |
||||
|
||||
class Clamp(nn.Module): |
||||
def forward(self, x): |
||||
return torch.tanh(x / 3) * 3 |
||||
|
||||
class Block(nn.Module): |
||||
def __init__(self, n_in, n_out): |
||||
super().__init__() |
||||
self.conv = nn.Sequential(conv(n_in, n_out), nn.ReLU(), conv(n_out, n_out), nn.ReLU(), conv(n_out, n_out)) |
||||
self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity() |
||||
self.fuse = nn.ReLU() |
||||
def forward(self, x): |
||||
return self.fuse(self.conv(x) + self.skip(x)) |
||||
|
||||
def Encoder(): |
||||
return nn.Sequential( |
||||
conv(3, 64), Block(64, 64), |
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), |
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), |
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64), |
||||
conv(64, 4), |
||||
) |
||||
|
||||
def Decoder(): |
||||
return nn.Sequential( |
||||
Clamp(), conv(4, 64), nn.ReLU(), |
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), |
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), |
||||
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False), |
||||
Block(64, 64), conv(64, 3), |
||||
) |
||||
|
||||
class TAESD(nn.Module): |
||||
latent_magnitude = 3 |
||||
latent_shift = 0.5 |
||||
|
||||
def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"): |
||||
"""Initialize pretrained TAESD on the given device from the given checkpoints.""" |
||||
super().__init__() |
||||
self.encoder = Encoder() |
||||
self.decoder = Decoder() |
||||
if encoder_path is not None: |
||||
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu")) |
||||
if decoder_path is not None: |
||||
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu")) |
||||
|
||||
@staticmethod |
||||
def scale_latents(x): |
||||
"""raw latents -> [0, 1]""" |
||||
return x.div(2 * TAESD.latent_magnitude).add(TAESD.latent_shift).clamp(0, 1) |
||||
|
||||
@staticmethod |
||||
def unscale_latents(x): |
||||
"""[0, 1] -> raw latents""" |
||||
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) |
Loading…
Reference in new issue