comfyanonymous
2 years ago
3 changed files with 106 additions and 74 deletions
@ -0,0 +1,57 @@ |
|||||||
|
import torch |
||||||
|
import comfy.model_management |
||||||
|
|
||||||
|
|
||||||
|
def prepare_noise(latent_image, seed, skip=0): |
||||||
|
""" |
||||||
|
creates random noise given a latent image and a seed. |
||||||
|
optional arg skip can be used to skip and discard x number of noise generations for a given seed |
||||||
|
""" |
||||||
|
generator = torch.manual_seed(seed) |
||||||
|
for _ in range(skip): |
||||||
|
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
||||||
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") |
||||||
|
return noise |
||||||
|
|
||||||
|
def prepare_mask(noise_mask, noise): |
||||||
|
"""ensures noise mask is of proper dimensions""" |
||||||
|
device = comfy.model_management.get_torch_device() |
||||||
|
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear") |
||||||
|
noise_mask = noise_mask.round() |
||||||
|
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1) |
||||||
|
noise_mask = torch.cat([noise_mask] * noise.shape[0]) |
||||||
|
noise_mask = noise_mask.to(device) |
||||||
|
return noise_mask |
||||||
|
|
||||||
|
def broadcast_cond(cond, noise): |
||||||
|
"""broadcasts conditioning to the noise batch size""" |
||||||
|
device = comfy.model_management.get_torch_device() |
||||||
|
copy = [] |
||||||
|
for p in cond: |
||||||
|
t = p[0] |
||||||
|
if t.shape[0] < noise.shape[0]: |
||||||
|
t = torch.cat([t] * noise.shape[0]) |
||||||
|
t = t.to(device) |
||||||
|
copy += [[t] + p[1:]] |
||||||
|
return copy |
||||||
|
|
||||||
|
def get_models_from_cond(cond, model_type): |
||||||
|
models = [] |
||||||
|
for c in cond: |
||||||
|
if model_type in c[1]: |
||||||
|
models += [c[1][model_type]] |
||||||
|
return models |
||||||
|
|
||||||
|
def load_additional_models(positive, negative): |
||||||
|
"""loads additional models in positive and negative conditioning""" |
||||||
|
control_nets = get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control") |
||||||
|
gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen") |
||||||
|
gligen = [x[1] for x in gligen] |
||||||
|
models = control_nets + gligen |
||||||
|
comfy.model_management.load_controlnet_gpu(models) |
||||||
|
return models |
||||||
|
|
||||||
|
def cleanup_additional_models(models): |
||||||
|
"""cleanup additional models that were loaded""" |
||||||
|
for m in models: |
||||||
|
m.cleanup() |
Loading…
Reference in new issue