sALTaccount
2 years ago
3 changed files with 382 additions and 1 deletions
@ -0,0 +1,364 @@
|
||||
import json |
||||
import os |
||||
import yaml |
||||
|
||||
# because of local import nonsense |
||||
import sys |
||||
sys.path.append(os.path.dirname(os.path.realpath(__file__))) |
||||
|
||||
import folder_paths |
||||
from comfy.ldm.util import instantiate_from_config |
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE |
||||
import os.path as osp |
||||
import re |
||||
import torch |
||||
from safetensors.torch import load_file, save_file |
||||
|
||||
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py |
||||
|
||||
# =================# |
||||
# UNet Conversion # |
||||
# =================# |
||||
|
||||
unet_conversion_map = [ |
||||
# (stable-diffusion, HF Diffusers) |
||||
("time_embed.0.weight", "time_embedding.linear_1.weight"), |
||||
("time_embed.0.bias", "time_embedding.linear_1.bias"), |
||||
("time_embed.2.weight", "time_embedding.linear_2.weight"), |
||||
("time_embed.2.bias", "time_embedding.linear_2.bias"), |
||||
("input_blocks.0.0.weight", "conv_in.weight"), |
||||
("input_blocks.0.0.bias", "conv_in.bias"), |
||||
("out.0.weight", "conv_norm_out.weight"), |
||||
("out.0.bias", "conv_norm_out.bias"), |
||||
("out.2.weight", "conv_out.weight"), |
||||
("out.2.bias", "conv_out.bias"), |
||||
] |
||||
|
||||
unet_conversion_map_resnet = [ |
||||
# (stable-diffusion, HF Diffusers) |
||||
("in_layers.0", "norm1"), |
||||
("in_layers.2", "conv1"), |
||||
("out_layers.0", "norm2"), |
||||
("out_layers.3", "conv2"), |
||||
("emb_layers.1", "time_emb_proj"), |
||||
("skip_connection", "conv_shortcut"), |
||||
] |
||||
|
||||
unet_conversion_map_layer = [] |
||||
# hardcoded number of downblocks and resnets/attentions... |
||||
# would need smarter logic for other networks. |
||||
for i in range(4): |
||||
# loop over downblocks/upblocks |
||||
|
||||
for j in range(2): |
||||
# loop over resnets/attentions for downblocks |
||||
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." |
||||
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0." |
||||
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) |
||||
|
||||
if i < 3: |
||||
# no attention layers in down_blocks.3 |
||||
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." |
||||
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1." |
||||
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) |
||||
|
||||
for j in range(3): |
||||
# loop over resnets/attentions for upblocks |
||||
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." |
||||
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0." |
||||
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) |
||||
|
||||
if i > 0: |
||||
# no attention layers in up_blocks.0 |
||||
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." |
||||
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1." |
||||
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) |
||||
|
||||
if i < 3: |
||||
# no downsample in down_blocks.3 |
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." |
||||
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op." |
||||
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) |
||||
|
||||
# no upsample in up_blocks.3 |
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
||||
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}." |
||||
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) |
||||
|
||||
hf_mid_atn_prefix = "mid_block.attentions.0." |
||||
sd_mid_atn_prefix = "middle_block.1." |
||||
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) |
||||
|
||||
for j in range(2): |
||||
hf_mid_res_prefix = f"mid_block.resnets.{j}." |
||||
sd_mid_res_prefix = f"middle_block.{2 * j}." |
||||
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
||||
|
||||
|
||||
def convert_unet_state_dict(unet_state_dict): |
||||
# buyer beware: this is a *brittle* function, |
||||
# and correct output requires that all of these pieces interact in |
||||
# the exact order in which I have arranged them. |
||||
mapping = {k: k for k in unet_state_dict.keys()} |
||||
for sd_name, hf_name in unet_conversion_map: |
||||
mapping[hf_name] = sd_name |
||||
for k, v in mapping.items(): |
||||
if "resnets" in k: |
||||
for sd_part, hf_part in unet_conversion_map_resnet: |
||||
v = v.replace(hf_part, sd_part) |
||||
mapping[k] = v |
||||
for k, v in mapping.items(): |
||||
for sd_part, hf_part in unet_conversion_map_layer: |
||||
v = v.replace(hf_part, sd_part) |
||||
mapping[k] = v |
||||
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} |
||||
return new_state_dict |
||||
|
||||
|
||||
# ================# |
||||
# VAE Conversion # |
||||
# ================# |
||||
|
||||
vae_conversion_map = [ |
||||
# (stable-diffusion, HF Diffusers) |
||||
("nin_shortcut", "conv_shortcut"), |
||||
("norm_out", "conv_norm_out"), |
||||
("mid.attn_1.", "mid_block.attentions.0."), |
||||
] |
||||
|
||||
for i in range(4): |
||||
# down_blocks have two resnets |
||||
for j in range(2): |
||||
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}." |
||||
sd_down_prefix = f"encoder.down.{i}.block.{j}." |
||||
vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) |
||||
|
||||
if i < 3: |
||||
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0." |
||||
sd_downsample_prefix = f"down.{i}.downsample." |
||||
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) |
||||
|
||||
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." |
||||
sd_upsample_prefix = f"up.{3 - i}.upsample." |
||||
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) |
||||
|
||||
# up_blocks have three resnets |
||||
# also, up blocks in hf are numbered in reverse from sd |
||||
for j in range(3): |
||||
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}." |
||||
sd_up_prefix = f"decoder.up.{3 - i}.block.{j}." |
||||
vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) |
||||
|
||||
# this part accounts for mid blocks in both the encoder and the decoder |
||||
for i in range(2): |
||||
hf_mid_res_prefix = f"mid_block.resnets.{i}." |
||||
sd_mid_res_prefix = f"mid.block_{i + 1}." |
||||
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) |
||||
|
||||
vae_conversion_map_attn = [ |
||||
# (stable-diffusion, HF Diffusers) |
||||
("norm.", "group_norm."), |
||||
("q.", "query."), |
||||
("k.", "key."), |
||||
("v.", "value."), |
||||
("proj_out.", "proj_attn."), |
||||
] |
||||
|
||||
|
||||
def reshape_weight_for_sd(w): |
||||
# convert HF linear weights to SD conv2d weights |
||||
return w.reshape(*w.shape, 1, 1) |
||||
|
||||
|
||||
def convert_vae_state_dict(vae_state_dict): |
||||
mapping = {k: k for k in vae_state_dict.keys()} |
||||
for k, v in mapping.items(): |
||||
for sd_part, hf_part in vae_conversion_map: |
||||
v = v.replace(hf_part, sd_part) |
||||
mapping[k] = v |
||||
for k, v in mapping.items(): |
||||
if "attentions" in k: |
||||
for sd_part, hf_part in vae_conversion_map_attn: |
||||
v = v.replace(hf_part, sd_part) |
||||
mapping[k] = v |
||||
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()} |
||||
weights_to_convert = ["q", "k", "v", "proj_out"] |
||||
for k, v in new_state_dict.items(): |
||||
for weight_name in weights_to_convert: |
||||
if f"mid.attn_1.{weight_name}.weight" in k: |
||||
print(f"Reshaping {k} for SD format") |
||||
new_state_dict[k] = reshape_weight_for_sd(v) |
||||
return new_state_dict |
||||
|
||||
|
||||
# =========================# |
||||
# Text Encoder Conversion # |
||||
# =========================# |
||||
|
||||
|
||||
textenc_conversion_lst = [ |
||||
# (stable-diffusion, HF Diffusers) |
||||
("resblocks.", "text_model.encoder.layers."), |
||||
("ln_1", "layer_norm1"), |
||||
("ln_2", "layer_norm2"), |
||||
(".c_fc.", ".fc1."), |
||||
(".c_proj.", ".fc2."), |
||||
(".attn", ".self_attn"), |
||||
("ln_final.", "transformer.text_model.final_layer_norm."), |
||||
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), |
||||
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), |
||||
] |
||||
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} |
||||
textenc_pattern = re.compile("|".join(protected.keys())) |
||||
|
||||
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp |
||||
code2idx = {"q": 0, "k": 1, "v": 2} |
||||
|
||||
|
||||
def convert_text_enc_state_dict_v20(text_enc_dict): |
||||
new_state_dict = {} |
||||
capture_qkv_weight = {} |
||||
capture_qkv_bias = {} |
||||
for k, v in text_enc_dict.items(): |
||||
if ( |
||||
k.endswith(".self_attn.q_proj.weight") |
||||
or k.endswith(".self_attn.k_proj.weight") |
||||
or k.endswith(".self_attn.v_proj.weight") |
||||
): |
||||
k_pre = k[: -len(".q_proj.weight")] |
||||
k_code = k[-len("q_proj.weight")] |
||||
if k_pre not in capture_qkv_weight: |
||||
capture_qkv_weight[k_pre] = [None, None, None] |
||||
capture_qkv_weight[k_pre][code2idx[k_code]] = v |
||||
continue |
||||
|
||||
if ( |
||||
k.endswith(".self_attn.q_proj.bias") |
||||
or k.endswith(".self_attn.k_proj.bias") |
||||
or k.endswith(".self_attn.v_proj.bias") |
||||
): |
||||
k_pre = k[: -len(".q_proj.bias")] |
||||
k_code = k[-len("q_proj.bias")] |
||||
if k_pre not in capture_qkv_bias: |
||||
capture_qkv_bias[k_pre] = [None, None, None] |
||||
capture_qkv_bias[k_pre][code2idx[k_code]] = v |
||||
continue |
||||
|
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k) |
||||
new_state_dict[relabelled_key] = v |
||||
|
||||
for k_pre, tensors in capture_qkv_weight.items(): |
||||
if None in tensors: |
||||
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") |
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) |
||||
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors) |
||||
|
||||
for k_pre, tensors in capture_qkv_bias.items(): |
||||
if None in tensors: |
||||
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing") |
||||
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre) |
||||
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors) |
||||
|
||||
return new_state_dict |
||||
|
||||
|
||||
def convert_text_enc_state_dict(text_enc_dict): |
||||
return text_enc_dict |
||||
|
||||
|
||||
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None): |
||||
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json"))) |
||||
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json"))) |
||||
|
||||
# magic |
||||
v2 = diffusers_unet_conf["sample_size"] == 96 |
||||
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction' |
||||
|
||||
if v2: |
||||
if v_pred: |
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml') |
||||
else: |
||||
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml') |
||||
else: |
||||
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml') |
||||
|
||||
with open(config_path, 'r') as stream: |
||||
config = yaml.safe_load(stream) |
||||
|
||||
model_config_params = config['model']['params'] |
||||
clip_config = model_config_params['cond_stage_config'] |
||||
scale_factor = model_config_params['scale_factor'] |
||||
vae_config = model_config_params['first_stage_config'] |
||||
vae_config['scale_factor'] = scale_factor |
||||
|
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors") |
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors") |
||||
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors") |
||||
|
||||
# Load models from safetensors if it exists, if it doesn't pytorch |
||||
if osp.exists(unet_path): |
||||
unet_state_dict = load_file(unet_path, device="cpu") |
||||
else: |
||||
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin") |
||||
unet_state_dict = torch.load(unet_path, map_location="cpu") |
||||
|
||||
if osp.exists(vae_path): |
||||
vae_state_dict = load_file(vae_path, device="cpu") |
||||
else: |
||||
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin") |
||||
vae_state_dict = torch.load(vae_path, map_location="cpu") |
||||
|
||||
if osp.exists(text_enc_path): |
||||
text_enc_dict = load_file(text_enc_path, device="cpu") |
||||
else: |
||||
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin") |
||||
text_enc_dict = torch.load(text_enc_path, map_location="cpu") |
||||
|
||||
# Convert the UNet model |
||||
unet_state_dict = convert_unet_state_dict(unet_state_dict) |
||||
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()} |
||||
|
||||
# Convert the VAE model |
||||
vae_state_dict = convert_vae_state_dict(vae_state_dict) |
||||
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()} |
||||
|
||||
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper |
||||
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict |
||||
|
||||
if is_v20_model: |
||||
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm |
||||
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()} |
||||
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict) |
||||
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()} |
||||
else: |
||||
text_enc_dict = convert_text_enc_state_dict(text_enc_dict) |
||||
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()} |
||||
|
||||
# Put together new checkpoint |
||||
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict} |
||||
|
||||
clip = None |
||||
vae = None |
||||
|
||||
class WeightsLoader(torch.nn.Module): |
||||
pass |
||||
|
||||
w = WeightsLoader() |
||||
load_state_dict_to = [] |
||||
if output_vae: |
||||
vae = VAE(scale_factor=scale_factor, config=vae_config) |
||||
w.first_stage_model = vae.first_stage_model |
||||
load_state_dict_to = [w] |
||||
|
||||
if output_clip: |
||||
clip = CLIP(config=clip_config, embedding_directory=embedding_directory) |
||||
w.cond_stage_model = clip.cond_stage_model |
||||
load_state_dict_to = [w] |
||||
|
||||
model = instantiate_from_config(config["model"]) |
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) |
||||
|
||||
if fp16: |
||||
model = model.half() |
||||
|
||||
return ModelPatcher(model), clip, vae |
Loading…
Reference in new issue