comfyanonymous
2 years ago
4 changed files with 233 additions and 1 deletions
@ -0,0 +1,125 @@
|
||||
#taken from https://github.com/TencentARC/T2I-Adapter |
||||
|
||||
import torch |
||||
import torch.nn as nn |
||||
import torch.nn.functional as F |
||||
from ldm.modules.attention import SpatialTransformer, BasicTransformerBlock |
||||
|
||||
def conv_nd(dims, *args, **kwargs): |
||||
""" |
||||
Create a 1D, 2D, or 3D convolution module. |
||||
""" |
||||
if dims == 1: |
||||
return nn.Conv1d(*args, **kwargs) |
||||
elif dims == 2: |
||||
return nn.Conv2d(*args, **kwargs) |
||||
elif dims == 3: |
||||
return nn.Conv3d(*args, **kwargs) |
||||
raise ValueError(f"unsupported dimensions: {dims}") |
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs): |
||||
""" |
||||
Create a 1D, 2D, or 3D average pooling module. |
||||
""" |
||||
if dims == 1: |
||||
return nn.AvgPool1d(*args, **kwargs) |
||||
elif dims == 2: |
||||
return nn.AvgPool2d(*args, **kwargs) |
||||
elif dims == 3: |
||||
return nn.AvgPool3d(*args, **kwargs) |
||||
raise ValueError(f"unsupported dimensions: {dims}") |
||||
|
||||
class Downsample(nn.Module): |
||||
""" |
||||
A downsampling layer with an optional convolution. |
||||
:param channels: channels in the inputs and outputs. |
||||
:param use_conv: a bool determining if a convolution is applied. |
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
||||
downsampling occurs in the inner-two dimensions. |
||||
""" |
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): |
||||
super().__init__() |
||||
self.channels = channels |
||||
self.out_channels = out_channels or channels |
||||
self.use_conv = use_conv |
||||
self.dims = dims |
||||
stride = 2 if dims != 3 else (1, 2, 2) |
||||
if use_conv: |
||||
self.op = conv_nd( |
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding |
||||
) |
||||
else: |
||||
assert self.channels == self.out_channels |
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
||||
|
||||
def forward(self, x): |
||||
assert x.shape[1] == self.channels |
||||
return self.op(x) |
||||
|
||||
|
||||
class ResnetBlock(nn.Module): |
||||
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): |
||||
super().__init__() |
||||
ps = ksize//2 |
||||
if in_c != out_c or sk==False: |
||||
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) |
||||
else: |
||||
# print('n_in') |
||||
self.in_conv = None |
||||
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) |
||||
self.act = nn.ReLU() |
||||
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) |
||||
if sk==False: |
||||
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) |
||||
else: |
||||
self.skep = None |
||||
|
||||
self.down = down |
||||
if self.down == True: |
||||
self.down_opt = Downsample(in_c, use_conv=use_conv) |
||||
|
||||
def forward(self, x): |
||||
if self.down == True: |
||||
x = self.down_opt(x) |
||||
if self.in_conv is not None: # edit |
||||
x = self.in_conv(x) |
||||
|
||||
h = self.block1(x) |
||||
h = self.act(h) |
||||
h = self.block2(h) |
||||
if self.skep is not None: |
||||
return h + self.skep(x) |
||||
else: |
||||
return h + x |
||||
|
||||
|
||||
class Adapter(nn.Module): |
||||
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True): |
||||
super(Adapter, self).__init__() |
||||
self.unshuffle = nn.PixelUnshuffle(8) |
||||
self.channels = channels |
||||
self.nums_rb = nums_rb |
||||
self.body = [] |
||||
for i in range(len(channels)): |
||||
for j in range(nums_rb): |
||||
if (i!=0) and (j==0): |
||||
self.body.append(ResnetBlock(channels[i-1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) |
||||
else: |
||||
self.body.append(ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) |
||||
self.body = nn.ModuleList(self.body) |
||||
self.conv_in = nn.Conv2d(cin,channels[0], 3, 1, 1) |
||||
|
||||
def forward(self, x): |
||||
# unshuffle |
||||
x = self.unshuffle(x) |
||||
# extract features |
||||
features = [] |
||||
x = self.conv_in(x) |
||||
for i in range(len(self.channels)): |
||||
for j in range(self.nums_rb): |
||||
idx = i*self.nums_rb +j |
||||
x = self.body[idx](x) |
||||
features.append(x) |
||||
|
||||
return features |
Loading…
Reference in new issue