Browse Source
It needs the CLIPVision model so I added CLIPVisionLoader and CLIPVisionEncode. Put the clip vision model in models/clip_vision Put the t2i style model in models/style_models StyleModelLoader to load it, StyleModelApply to apply it ConditioningAppend to append the conditioning it outputs to a positive one.pull/44/head
comfyanonymous
2 years ago
5 changed files with 143 additions and 5 deletions
@ -0,0 +1,32 @@ |
|||||||
|
from transformers import CLIPVisionModel, CLIPVisionConfig, CLIPImageProcessor |
||||||
|
from comfy.sd import load_torch_file |
||||||
|
import os |
||||||
|
|
||||||
|
class ClipVisionModel(): |
||||||
|
def __init__(self): |
||||||
|
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config.json") |
||||||
|
config = CLIPVisionConfig.from_json_file(json_config) |
||||||
|
self.model = CLIPVisionModel(config) |
||||||
|
self.processor = CLIPImageProcessor(crop_size=224, |
||||||
|
do_center_crop=True, |
||||||
|
do_convert_rgb=True, |
||||||
|
do_normalize=True, |
||||||
|
do_resize=True, |
||||||
|
image_mean=[ 0.48145466,0.4578275,0.40821073], |
||||||
|
image_std=[0.26862954,0.26130258,0.27577711], |
||||||
|
resample=3, #bicubic |
||||||
|
size=224) |
||||||
|
|
||||||
|
def load_sd(self, sd): |
||||||
|
self.model.load_state_dict(sd, strict=False) |
||||||
|
|
||||||
|
def encode_image(self, image): |
||||||
|
inputs = self.processor(images=[image[0]], return_tensors="pt") |
||||||
|
outputs = self.model(**inputs) |
||||||
|
return outputs |
||||||
|
|
||||||
|
def load(ckpt_path): |
||||||
|
clip_data = load_torch_file(ckpt_path) |
||||||
|
clip = ClipVisionModel() |
||||||
|
clip.load_sd(clip_data) |
||||||
|
return clip |
Loading…
Reference in new issue