Browse Source

Implement support for t2i style model.

It needs the CLIPVision model so I added CLIPVisionLoader and CLIPVisionEncode.

Put the clip vision model in models/clip_vision
Put the t2i style model in models/style_models

StyleModelLoader to load it, StyleModelApply to apply it
ConditioningAppend to append the conditioning it outputs to a positive one.
pull/44/head
comfyanonymous 2 years ago
parent
commit
47acb3d73e
  1. 26
      comfy/sd.py
  2. 32
      comfy_extras/clip_vision.py
  3. 0
      models/clip_vision/put_clip_vision_models_here
  4. 0
      models/style_models/put_t2i_style_model_here
  5. 90
      nodes.py

26
comfy/sd.py

@ -613,11 +613,7 @@ class T2IAdapter:
def load_t2i_adapter(ckpt_path, model=None): def load_t2i_adapter(ckpt_path, model=None):
t2i_data = load_torch_file(ckpt_path) t2i_data = load_torch_file(ckpt_path)
keys = t2i_data.keys() keys = t2i_data.keys()
if "style_embedding" in keys: if "body.0.in_conv.weight" in keys:
pass
# TODO
# model_ad = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
elif "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1] cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4) model_ad = adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
else: else:
@ -626,6 +622,26 @@ def load_t2i_adapter(ckpt_path, model=None):
model_ad.load_state_dict(t2i_data) model_ad.load_state_dict(t2i_data)
return T2IAdapter(model_ad, cin // 64) return T2IAdapter(model_ad, cin // 64)
class StyleModel:
def __init__(self, model, device="cpu"):
self.model = model
def get_cond(self, input):
return self.model(input.last_hidden_state)
def load_style_model(ckpt_path):
model_data = load_torch_file(ckpt_path)
keys = model_data.keys()
if "style_embedding" in keys:
model = adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8)
else:
raise Exception("invalid style model {}".format(ckpt_path))
model.load_state_dict(model_data)
return StyleModel(model)
def load_clip(ckpt_path, embedding_directory=None): def load_clip(ckpt_path, embedding_directory=None):
clip_data = load_torch_file(ckpt_path) clip_data = load_torch_file(ckpt_path)
config = {} config = {}

32
comfy_extras/clip_vision.py

@ -0,0 +1,32 @@
from transformers import CLIPVisionModel, CLIPVisionConfig, CLIPImageProcessor
from comfy.sd import load_torch_file
import os
class ClipVisionModel():
def __init__(self):
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config.json")
config = CLIPVisionConfig.from_json_file(json_config)
self.model = CLIPVisionModel(config)
self.processor = CLIPImageProcessor(crop_size=224,
do_center_crop=True,
do_convert_rgb=True,
do_normalize=True,
do_resize=True,
image_mean=[ 0.48145466,0.4578275,0.40821073],
image_std=[0.26862954,0.26130258,0.27577711],
resample=3, #bicubic
size=224)
def load_sd(self, sd):
self.model.load_state_dict(sd, strict=False)
def encode_image(self, image):
inputs = self.processor(images=[image[0]], return_tensors="pt")
outputs = self.model(**inputs)
return outputs
def load(ckpt_path):
clip_data = load_torch_file(ckpt_path)
clip = ClipVisionModel()
clip.load_sd(clip_data)
return clip

0
models/clip_vision/put_clip_vision_models_here

0
models/style_models/put_t2i_style_model_here

90
nodes.py

@ -18,6 +18,8 @@ import comfy.samplers
import comfy.sd import comfy.sd
import comfy.utils import comfy.utils
import comfy_extras.clip_vision
import model_management import model_management
import importlib import importlib
@ -370,6 +372,89 @@ class CLIPLoader:
clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory) clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
return (clip,) return (clip,)
class CLIPVisionLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
clip_dir = os.path.join(models_dir, "clip_vision")
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
}}
RETURN_TYPES = ("CLIP_VISION",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name):
clip_path = os.path.join(self.clip_dir, clip_name)
clip_vision = comfy_extras.clip_vision.load(clip_path)
return (clip_vision,)
class CLIPVisionEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"image": ("IMAGE",)
}}
RETURN_TYPES = ("CLIP_VISION_EMBED",)
FUNCTION = "encode"
CATEGORY = "conditioning"
def encode(self, clip_vision, image):
output = clip_vision.encode_image(image)
return (output,)
class StyleModelLoader:
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
style_model_dir = os.path.join(models_dir, "style_models")
@classmethod
def INPUT_TYPES(s):
return {"required": { "style_model_name": (filter_files_extensions(recursive_search(s.style_model_dir), supported_pt_extensions), )}}
RETURN_TYPES = ("STYLE_MODEL",)
FUNCTION = "load_style_model"
CATEGORY = "loaders"
def load_style_model(self, style_model_name):
style_model_path = os.path.join(self.style_model_dir, style_model_name)
style_model = comfy.sd.load_style_model(style_model_path)
return (style_model,)
class StyleModelApply:
@classmethod
def INPUT_TYPES(s):
return {"required": {"clip_vision_embed": ("CLIP_VISION_EMBED", ),
"style_model": ("STYLE_MODEL", )
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
CATEGORY = "conditioning"
def apply_stylemodel(self, clip_vision_embed, style_model):
c = style_model.get_cond(clip_vision_embed)
return ([[c, {}]], )
class ConditioningAppend:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", )}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, conditioning_to, conditioning_from):
c = []
to_append = conditioning_from[0][0]
for t in conditioning_to:
n = [torch.cat((t[0],to_append), dim=1), t[1].copy()]
c.append(n)
return (c, )
class EmptyLatentImage: class EmptyLatentImage:
def __init__(self, device="cpu"): def __init__(self, device="cpu"):
self.device = device self.device = device
@ -866,6 +951,11 @@ NODE_CLASS_MAPPINGS = {
"LatentCrop": LatentCrop, "LatentCrop": LatentCrop,
"LoraLoader": LoraLoader, "LoraLoader": LoraLoader,
"CLIPLoader": CLIPLoader, "CLIPLoader": CLIPLoader,
"StyleModelLoader": StyleModelLoader,
"CLIPVisionLoader": CLIPVisionLoader,
"CLIPVisionEncode": CLIPVisionEncode,
"StyleModelApply":StyleModelApply,
"ConditioningAppend":ConditioningAppend,
"ControlNetApply": ControlNetApply, "ControlNetApply": ControlNetApply,
"ControlNetLoader": ControlNetLoader, "ControlNetLoader": ControlNetLoader,
"DiffControlNetLoader": DiffControlNetLoader, "DiffControlNetLoader": DiffControlNetLoader,

Loading…
Cancel
Save