Browse Source

Add debug options to force on and off attention upcasting.

pull/3275/merge
comfyanonymous 6 months ago
parent
commit
46daf0a9a7
  1. 5
      comfy/cli_args.py
  2. 14
      comfy/ldm/modules/attention.py

5
comfy/cli_args.py

@ -95,6 +95,11 @@ attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", he
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.") parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
upcast = parser.add_mutually_exclusive_group()
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
vram_group = parser.add_mutually_exclusive_group() vram_group = parser.add_mutually_exclusive_group()
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).") vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.") vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")

14
comfy/ldm/modules/attention.py

@ -19,6 +19,14 @@ from comfy.cli_args import args
import comfy.ops import comfy.ops
ops = comfy.ops.disable_weight_init ops = comfy.ops.disable_weight_init
def get_attn_precision(attn_precision):
if args.dont_upcast_attention:
return None
if attn_precision is None and args.force_upcast_attention:
return torch.float32
return attn_precision
def exists(val): def exists(val):
return val is not None return val is not None
@ -78,6 +86,8 @@ def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None): def attention_basic(q, k, v, heads, mask=None, attn_precision=None):
attn_precision = get_attn_precision(attn_precision)
b, _, dim_head = q.shape b, _, dim_head = q.shape
dim_head //= heads dim_head //= heads
scale = dim_head ** -0.5 scale = dim_head ** -0.5
@ -128,6 +138,8 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None):
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None): def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None):
attn_precision = get_attn_precision(attn_precision)
b, _, dim_head = query.shape b, _, dim_head = query.shape
dim_head //= heads dim_head //= heads
@ -188,6 +200,8 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None)
return hidden_states return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None): def attention_split(q, k, v, heads, mask=None, attn_precision=None):
attn_precision = get_attn_precision(attn_precision)
b, _, dim_head = q.shape b, _, dim_head = q.shape
dim_head //= heads dim_head //= heads
scale = dim_head ** -0.5 scale = dim_head ** -0.5

Loading…
Cancel
Save