|
|
|
@ -115,17 +115,33 @@ class EmptyLatentImage:
|
|
|
|
|
|
|
|
|
|
class LatentUpscale: |
|
|
|
|
upscale_methods = ["nearest-exact", "bilinear", "area"] |
|
|
|
|
crop_methods = ["disabled", "center"] |
|
|
|
|
|
|
|
|
|
@classmethod |
|
|
|
|
def INPUT_TYPES(s): |
|
|
|
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,), |
|
|
|
|
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
|
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),}} |
|
|
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), |
|
|
|
|
"crop": (s.crop_methods,)}} |
|
|
|
|
RETURN_TYPES = ("LATENT",) |
|
|
|
|
FUNCTION = "upscale" |
|
|
|
|
|
|
|
|
|
def upscale(self, samples, upscale_method, width, height): |
|
|
|
|
s = torch.nn.functional.interpolate(samples, size=(height // 8, width // 8), mode=upscale_method) |
|
|
|
|
def upscale(self, samples, upscale_method, width, height, crop): |
|
|
|
|
if crop == "center": |
|
|
|
|
old_width = samples.shape[3] |
|
|
|
|
old_height = samples.shape[2] |
|
|
|
|
old_aspect = old_width / old_height |
|
|
|
|
new_aspect = width / height |
|
|
|
|
x = 0 |
|
|
|
|
y = 0 |
|
|
|
|
if old_aspect > new_aspect: |
|
|
|
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) |
|
|
|
|
elif old_aspect < new_aspect: |
|
|
|
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) |
|
|
|
|
s = samples[:,:,y:old_height-y,x:old_width-x] |
|
|
|
|
else: |
|
|
|
|
s = samples |
|
|
|
|
s = torch.nn.functional.interpolate(s, size=(height // 8, width // 8), mode=upscale_method) |
|
|
|
|
return (s,) |
|
|
|
|
|
|
|
|
|
class KSampler: |
|
|
|
|