Browse Source

SV3D support.

pull/3088/head
comfyanonymous 8 months ago
parent
commit
40e124c6be
  1. 30
      comfy/model_base.py
  2. 37
      comfy/supported_models.py
  3. 53
      comfy_extras/nodes_stable3d.py
  4. 28
      comfy_extras/nodes_video_model.py

30
comfy/model_base.py

@ -380,6 +380,36 @@ class SVD_img2vid(BaseModel):
out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
return out
class SV3D_u(SVD_img2vid):
def encode_adm(self, **kwargs):
augmentation = kwargs.get("augmentation_level", 0)
out = []
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
return flat
class SV3D_p(SVD_img2vid):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
super().__init__(model_config, model_type, device=device)
self.embedder_512 = Timestep(512)
def encode_adm(self, **kwargs):
augmentation = kwargs.get("augmentation_level", 0)
elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here
azimuth = kwargs.get("azimuth", 0)
noise = kwargs.get("noise", None)
out = []
out.append(self.embedder(torch.flatten(torch.Tensor([augmentation]))))
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0))))
out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0))))
out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out))
return torch.cat(out, dim=1)
class Stable_Zero123(BaseModel):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
super().__init__(model_config, model_type, device=device)

37
comfy/supported_models.py

@ -284,6 +284,41 @@ class SVD_img2vid(supported_models_base.BASE):
def clip_target(self):
return None
class SV3D_u(SVD_img2vid):
unet_config = {
"model_channels": 320,
"in_channels": 8,
"use_linear_in_transformer": True,
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
"context_dim": 1024,
"adm_in_channels": 256,
"use_temporal_attention": True,
"use_temporal_resblock": True
}
vae_key_prefix = ["conditioner.embedders.1.encoder."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SV3D_u(self, device=device)
return out
class SV3D_p(SV3D_u):
unet_config = {
"model_channels": 320,
"in_channels": 8,
"use_linear_in_transformer": True,
"transformer_depth": [1, 1, 1, 1, 1, 1, 0, 0],
"context_dim": 1024,
"adm_in_channels": 1280,
"use_temporal_attention": True,
"use_temporal_resblock": True
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SV3D_p(self, device=device)
return out
class Stable_Zero123(supported_models_base.BASE):
unet_config = {
"context_dim": 768,
@ -405,5 +440,5 @@ class Stable_Cascade_B(Stable_Cascade_C):
return out
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B]
models = [Stable_Zero123, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p]
models += [SVD_img2vid]

53
comfy_extras/nodes_stable3d.py

@ -29,8 +29,8 @@ class StableZero123_Conditioning:
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
@ -62,10 +62,10 @@ class StableZero123_Conditioning_Batched:
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
@ -95,8 +95,49 @@ class StableZero123_Conditioning_Batched:
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size})
class SV3D_Conditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"video_frames": ("INT", {"default": 21, "min": 1, "max": 4096}),
"elevation": ("FLOAT", {"default": 0.0, "min": -90.0, "max": 90.0, "step": 0.1, "round": False}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/3d_models"
def encode(self, clip_vision, init_image, vae, width, height, video_frames, elevation):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
azimuth = 0
azimuth_increment = 360 / (max(video_frames, 2) - 1)
elevations = []
azimuths = []
for i in range(video_frames):
elevations.append(elevation)
azimuths.append(azimuth)
azimuth += azimuth_increment
positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]]
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t), "elevation": elevations, "azimuth": azimuths}]]
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
return (positive, negative, {"samples":latent})
NODE_CLASS_MAPPINGS = {
"StableZero123_Conditioning": StableZero123_Conditioning,
"StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched,
"SV3D_Conditioning": SV3D_Conditioning,
}

28
comfy_extras/nodes_video_model.py

@ -79,6 +79,33 @@ class VideoLinearCFGGuidance:
m.set_model_sampler_cfg_function(linear_cfg)
return (m, )
class VideoTriangleCFGGuidance:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "sampling/video_models"
def patch(self, model, min_cfg):
def linear_cfg(args):
cond = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
period = 1.0
values = torch.linspace(0, 1, cond.shape[0], device=cond.device)
values = 2 * (values / period - torch.floor(values / period + 0.5)).abs()
scale = (values * (cond_scale - min_cfg) + min_cfg).reshape((cond.shape[0], 1, 1, 1))
return uncond + scale * (cond - uncond)
m = model.clone()
m.set_model_sampler_cfg_function(linear_cfg)
return (m, )
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
CATEGORY = "_for_testing"
@ -98,6 +125,7 @@ NODE_CLASS_MAPPINGS = {
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
"SVD_img2vid_Conditioning": SVD_img2vid_Conditioning,
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
"VideoTriangleCFGGuidance": VideoTriangleCFGGuidance,
"ImageOnlyCheckpointSave": ImageOnlyCheckpointSave,
}

Loading…
Cancel
Save