comfyanonymous
1 year ago
5 changed files with 0 additions and 2299 deletions
@ -1,2 +0,0 @@ |
|||||||
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr |
|
||||||
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light |
|
@ -1,730 +0,0 @@ |
|||||||
# -*- coding: utf-8 -*- |
|
||||||
""" |
|
||||||
# -------------------------------------------- |
|
||||||
# Super-Resolution |
|
||||||
# -------------------------------------------- |
|
||||||
# |
|
||||||
# Kai Zhang (cskaizhang@gmail.com) |
|
||||||
# https://github.com/cszn |
|
||||||
# From 2019/03--2021/08 |
|
||||||
# -------------------------------------------- |
|
||||||
""" |
|
||||||
|
|
||||||
import numpy as np |
|
||||||
import cv2 |
|
||||||
import torch |
|
||||||
|
|
||||||
from functools import partial |
|
||||||
import random |
|
||||||
from scipy import ndimage |
|
||||||
import scipy |
|
||||||
import scipy.stats as ss |
|
||||||
from scipy.interpolate import interp2d |
|
||||||
from scipy.linalg import orth |
|
||||||
import albumentations |
|
||||||
|
|
||||||
import ldm.modules.image_degradation.utils_image as util |
|
||||||
|
|
||||||
|
|
||||||
def modcrop_np(img, sf): |
|
||||||
''' |
|
||||||
Args: |
|
||||||
img: numpy image, WxH or WxHxC |
|
||||||
sf: scale factor |
|
||||||
Return: |
|
||||||
cropped image |
|
||||||
''' |
|
||||||
w, h = img.shape[:2] |
|
||||||
im = np.copy(img) |
|
||||||
return im[:w - w % sf, :h - h % sf, ...] |
|
||||||
|
|
||||||
|
|
||||||
""" |
|
||||||
# -------------------------------------------- |
|
||||||
# anisotropic Gaussian kernels |
|
||||||
# -------------------------------------------- |
|
||||||
""" |
|
||||||
|
|
||||||
|
|
||||||
def analytic_kernel(k): |
|
||||||
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" |
|
||||||
k_size = k.shape[0] |
|
||||||
# Calculate the big kernels size |
|
||||||
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) |
|
||||||
# Loop over the small kernel to fill the big one |
|
||||||
for r in range(k_size): |
|
||||||
for c in range(k_size): |
|
||||||
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k |
|
||||||
# Crop the edges of the big kernel to ignore very small values and increase run time of SR |
|
||||||
crop = k_size // 2 |
|
||||||
cropped_big_k = big_k[crop:-crop, crop:-crop] |
|
||||||
# Normalize to 1 |
|
||||||
return cropped_big_k / cropped_big_k.sum() |
|
||||||
|
|
||||||
|
|
||||||
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): |
|
||||||
""" generate an anisotropic Gaussian kernel |
|
||||||
Args: |
|
||||||
ksize : e.g., 15, kernel size |
|
||||||
theta : [0, pi], rotation angle range |
|
||||||
l1 : [0.1,50], scaling of eigenvalues |
|
||||||
l2 : [0.1,l1], scaling of eigenvalues |
|
||||||
If l1 = l2, will get an isotropic Gaussian kernel. |
|
||||||
Returns: |
|
||||||
k : kernel |
|
||||||
""" |
|
||||||
|
|
||||||
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) |
|
||||||
V = np.array([[v[0], v[1]], [v[1], -v[0]]]) |
|
||||||
D = np.array([[l1, 0], [0, l2]]) |
|
||||||
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) |
|
||||||
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) |
|
||||||
|
|
||||||
return k |
|
||||||
|
|
||||||
|
|
||||||
def gm_blur_kernel(mean, cov, size=15): |
|
||||||
center = size / 2.0 + 0.5 |
|
||||||
k = np.zeros([size, size]) |
|
||||||
for y in range(size): |
|
||||||
for x in range(size): |
|
||||||
cy = y - center + 1 |
|
||||||
cx = x - center + 1 |
|
||||||
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) |
|
||||||
|
|
||||||
k = k / np.sum(k) |
|
||||||
return k |
|
||||||
|
|
||||||
|
|
||||||
def shift_pixel(x, sf, upper_left=True): |
|
||||||
"""shift pixel for super-resolution with different scale factors |
|
||||||
Args: |
|
||||||
x: WxHxC or WxH |
|
||||||
sf: scale factor |
|
||||||
upper_left: shift direction |
|
||||||
""" |
|
||||||
h, w = x.shape[:2] |
|
||||||
shift = (sf - 1) * 0.5 |
|
||||||
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) |
|
||||||
if upper_left: |
|
||||||
x1 = xv + shift |
|
||||||
y1 = yv + shift |
|
||||||
else: |
|
||||||
x1 = xv - shift |
|
||||||
y1 = yv - shift |
|
||||||
|
|
||||||
x1 = np.clip(x1, 0, w - 1) |
|
||||||
y1 = np.clip(y1, 0, h - 1) |
|
||||||
|
|
||||||
if x.ndim == 2: |
|
||||||
x = interp2d(xv, yv, x)(x1, y1) |
|
||||||
if x.ndim == 3: |
|
||||||
for i in range(x.shape[-1]): |
|
||||||
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) |
|
||||||
|
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def blur(x, k): |
|
||||||
''' |
|
||||||
x: image, NxcxHxW |
|
||||||
k: kernel, Nx1xhxw |
|
||||||
''' |
|
||||||
n, c = x.shape[:2] |
|
||||||
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 |
|
||||||
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') |
|
||||||
k = k.repeat(1, c, 1, 1) |
|
||||||
k = k.view(-1, 1, k.shape[2], k.shape[3]) |
|
||||||
x = x.view(1, -1, x.shape[2], x.shape[3]) |
|
||||||
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) |
|
||||||
x = x.view(n, c, x.shape[2], x.shape[3]) |
|
||||||
|
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): |
|
||||||
"""" |
|
||||||
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator |
|
||||||
# Kai Zhang |
|
||||||
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var |
|
||||||
# max_var = 2.5 * sf |
|
||||||
""" |
|
||||||
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix |
|
||||||
lambda_1 = min_var + np.random.rand() * (max_var - min_var) |
|
||||||
lambda_2 = min_var + np.random.rand() * (max_var - min_var) |
|
||||||
theta = np.random.rand() * np.pi # random theta |
|
||||||
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 |
|
||||||
|
|
||||||
# Set COV matrix using Lambdas and Theta |
|
||||||
LAMBDA = np.diag([lambda_1, lambda_2]) |
|
||||||
Q = np.array([[np.cos(theta), -np.sin(theta)], |
|
||||||
[np.sin(theta), np.cos(theta)]]) |
|
||||||
SIGMA = Q @ LAMBDA @ Q.T |
|
||||||
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] |
|
||||||
|
|
||||||
# Set expectation position (shifting kernel for aligned image) |
|
||||||
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) |
|
||||||
MU = MU[None, None, :, None] |
|
||||||
|
|
||||||
# Create meshgrid for Gaussian |
|
||||||
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) |
|
||||||
Z = np.stack([X, Y], 2)[:, :, :, None] |
|
||||||
|
|
||||||
# Calcualte Gaussian for every pixel of the kernel |
|
||||||
ZZ = Z - MU |
|
||||||
ZZ_t = ZZ.transpose(0, 1, 3, 2) |
|
||||||
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) |
|
||||||
|
|
||||||
# shift the kernel so it will be centered |
|
||||||
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) |
|
||||||
|
|
||||||
# Normalize the kernel and return |
|
||||||
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered) |
|
||||||
kernel = raw_kernel / np.sum(raw_kernel) |
|
||||||
return kernel |
|
||||||
|
|
||||||
|
|
||||||
def fspecial_gaussian(hsize, sigma): |
|
||||||
hsize = [hsize, hsize] |
|
||||||
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] |
|
||||||
std = sigma |
|
||||||
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) |
|
||||||
arg = -(x * x + y * y) / (2 * std * std) |
|
||||||
h = np.exp(arg) |
|
||||||
h[h < scipy.finfo(float).eps * h.max()] = 0 |
|
||||||
sumh = h.sum() |
|
||||||
if sumh != 0: |
|
||||||
h = h / sumh |
|
||||||
return h |
|
||||||
|
|
||||||
|
|
||||||
def fspecial_laplacian(alpha): |
|
||||||
alpha = max([0, min([alpha, 1])]) |
|
||||||
h1 = alpha / (alpha + 1) |
|
||||||
h2 = (1 - alpha) / (alpha + 1) |
|
||||||
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] |
|
||||||
h = np.array(h) |
|
||||||
return h |
|
||||||
|
|
||||||
|
|
||||||
def fspecial(filter_type, *args, **kwargs): |
|
||||||
''' |
|
||||||
python code from: |
|
||||||
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py |
|
||||||
''' |
|
||||||
if filter_type == 'gaussian': |
|
||||||
return fspecial_gaussian(*args, **kwargs) |
|
||||||
if filter_type == 'laplacian': |
|
||||||
return fspecial_laplacian(*args, **kwargs) |
|
||||||
|
|
||||||
|
|
||||||
""" |
|
||||||
# -------------------------------------------- |
|
||||||
# degradation models |
|
||||||
# -------------------------------------------- |
|
||||||
""" |
|
||||||
|
|
||||||
|
|
||||||
def bicubic_degradation(x, sf=3): |
|
||||||
''' |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1] |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
bicubicly downsampled LR image |
|
||||||
''' |
|
||||||
x = util.imresize_np(x, scale=1 / sf) |
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def srmd_degradation(x, k, sf=3): |
|
||||||
''' blur + bicubic downsampling |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1] |
|
||||||
k: hxw, double |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
downsampled LR image |
|
||||||
Reference: |
|
||||||
@inproceedings{zhang2018learning, |
|
||||||
title={Learning a single convolutional super-resolution network for multiple degradations}, |
|
||||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, |
|
||||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
||||||
pages={3262--3271}, |
|
||||||
year={2018} |
|
||||||
} |
|
||||||
''' |
|
||||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' |
|
||||||
x = bicubic_degradation(x, sf=sf) |
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def dpsr_degradation(x, k, sf=3): |
|
||||||
''' bicubic downsampling + blur |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1] |
|
||||||
k: hxw, double |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
downsampled LR image |
|
||||||
Reference: |
|
||||||
@inproceedings{zhang2019deep, |
|
||||||
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, |
|
||||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, |
|
||||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
||||||
pages={1671--1681}, |
|
||||||
year={2019} |
|
||||||
} |
|
||||||
''' |
|
||||||
x = bicubic_degradation(x, sf=sf) |
|
||||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def classical_degradation(x, k, sf=3): |
|
||||||
''' blur + downsampling |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1]/[0, 255] |
|
||||||
k: hxw, double |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
downsampled LR image |
|
||||||
''' |
|
||||||
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
||||||
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) |
|
||||||
st = 0 |
|
||||||
return x[st::sf, st::sf, ...] |
|
||||||
|
|
||||||
|
|
||||||
def add_sharpening(img, weight=0.5, radius=50, threshold=10): |
|
||||||
"""USM sharpening. borrowed from real-ESRGAN |
|
||||||
Input image: I; Blurry image: B. |
|
||||||
1. K = I + weight * (I - B) |
|
||||||
2. Mask = 1 if abs(I - B) > threshold, else: 0 |
|
||||||
3. Blur mask: |
|
||||||
4. Out = Mask * K + (1 - Mask) * I |
|
||||||
Args: |
|
||||||
img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. |
|
||||||
weight (float): Sharp weight. Default: 1. |
|
||||||
radius (float): Kernel size of Gaussian blur. Default: 50. |
|
||||||
threshold (int): |
|
||||||
""" |
|
||||||
if radius % 2 == 0: |
|
||||||
radius += 1 |
|
||||||
blur = cv2.GaussianBlur(img, (radius, radius), 0) |
|
||||||
residual = img - blur |
|
||||||
mask = np.abs(residual) * 255 > threshold |
|
||||||
mask = mask.astype('float32') |
|
||||||
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) |
|
||||||
|
|
||||||
K = img + weight * residual |
|
||||||
K = np.clip(K, 0, 1) |
|
||||||
return soft_mask * K + (1 - soft_mask) * img |
|
||||||
|
|
||||||
|
|
||||||
def add_blur(img, sf=4): |
|
||||||
wd2 = 4.0 + sf |
|
||||||
wd = 2.0 + 0.2 * sf |
|
||||||
if random.random() < 0.5: |
|
||||||
l1 = wd2 * random.random() |
|
||||||
l2 = wd2 * random.random() |
|
||||||
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) |
|
||||||
else: |
|
||||||
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()) |
|
||||||
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') |
|
||||||
|
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_resize(img, sf=4): |
|
||||||
rnum = np.random.rand() |
|
||||||
if rnum > 0.8: # up |
|
||||||
sf1 = random.uniform(1, 2) |
|
||||||
elif rnum < 0.7: # down |
|
||||||
sf1 = random.uniform(0.5 / sf, 1) |
|
||||||
else: |
|
||||||
sf1 = 1.0 |
|
||||||
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
|
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): |
|
||||||
# noise_level = random.randint(noise_level1, noise_level2) |
|
||||||
# rnum = np.random.rand() |
|
||||||
# if rnum > 0.6: # add color Gaussian noise |
|
||||||
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
||||||
# elif rnum < 0.4: # add grayscale Gaussian noise |
|
||||||
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
||||||
# else: # add noise |
|
||||||
# L = noise_level2 / 255. |
|
||||||
# D = np.diag(np.random.rand(3)) |
|
||||||
# U = orth(np.random.rand(3, 3)) |
|
||||||
# conv = np.dot(np.dot(np.transpose(U), D), U) |
|
||||||
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
||||||
# img = np.clip(img, 0.0, 1.0) |
|
||||||
# return img |
|
||||||
|
|
||||||
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): |
|
||||||
noise_level = random.randint(noise_level1, noise_level2) |
|
||||||
rnum = np.random.rand() |
|
||||||
if rnum > 0.6: # add color Gaussian noise |
|
||||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
||||||
elif rnum < 0.4: # add grayscale Gaussian noise |
|
||||||
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
||||||
else: # add noise |
|
||||||
L = noise_level2 / 255. |
|
||||||
D = np.diag(np.random.rand(3)) |
|
||||||
U = orth(np.random.rand(3, 3)) |
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U) |
|
||||||
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_speckle_noise(img, noise_level1=2, noise_level2=25): |
|
||||||
noise_level = random.randint(noise_level1, noise_level2) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
rnum = random.random() |
|
||||||
if rnum > 0.6: |
|
||||||
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
||||||
elif rnum < 0.4: |
|
||||||
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
||||||
else: |
|
||||||
L = noise_level2 / 255. |
|
||||||
D = np.diag(np.random.rand(3)) |
|
||||||
U = orth(np.random.rand(3, 3)) |
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U) |
|
||||||
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_Poisson_noise(img): |
|
||||||
img = np.clip((img * 255.0).round(), 0, 255) / 255. |
|
||||||
vals = 10 ** (2 * random.random() + 2.0) # [2, 4] |
|
||||||
if random.random() < 0.5: |
|
||||||
img = np.random.poisson(img * vals).astype(np.float32) / vals |
|
||||||
else: |
|
||||||
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) |
|
||||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. |
|
||||||
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray |
|
||||||
img += noise_gray[:, :, np.newaxis] |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_JPEG_noise(img): |
|
||||||
quality_factor = random.randint(30, 95) |
|
||||||
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) |
|
||||||
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) |
|
||||||
img = cv2.imdecode(encimg, 1) |
|
||||||
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def random_crop(lq, hq, sf=4, lq_patchsize=64): |
|
||||||
h, w = lq.shape[:2] |
|
||||||
rnd_h = random.randint(0, h - lq_patchsize) |
|
||||||
rnd_w = random.randint(0, w - lq_patchsize) |
|
||||||
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] |
|
||||||
|
|
||||||
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) |
|
||||||
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] |
|
||||||
return lq, hq |
|
||||||
|
|
||||||
|
|
||||||
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): |
|
||||||
""" |
|
||||||
This is the degradation model of BSRGAN from the paper |
|
||||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" |
|
||||||
---------- |
|
||||||
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) |
|
||||||
sf: scale factor |
|
||||||
isp_model: camera ISP model |
|
||||||
Returns |
|
||||||
------- |
|
||||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
||||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
||||||
""" |
|
||||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 |
|
||||||
sf_ori = sf |
|
||||||
|
|
||||||
h1, w1 = img.shape[:2] |
|
||||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop |
|
||||||
h, w = img.shape[:2] |
|
||||||
|
|
||||||
if h < lq_patchsize * sf or w < lq_patchsize * sf: |
|
||||||
raise ValueError(f'img size ({h1}X{w1}) is too small!') |
|
||||||
|
|
||||||
hq = img.copy() |
|
||||||
|
|
||||||
if sf == 4 and random.random() < scale2_prob: # downsample1 |
|
||||||
if np.random.rand() < 0.5: |
|
||||||
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
img = util.imresize_np(img, 1 / 2, True) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
sf = 2 |
|
||||||
|
|
||||||
shuffle_order = random.sample(range(7), 7) |
|
||||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) |
|
||||||
if idx1 > idx2: # keep downsample3 last |
|
||||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] |
|
||||||
|
|
||||||
for i in shuffle_order: |
|
||||||
|
|
||||||
if i == 0: |
|
||||||
img = add_blur(img, sf=sf) |
|
||||||
|
|
||||||
elif i == 1: |
|
||||||
img = add_blur(img, sf=sf) |
|
||||||
|
|
||||||
elif i == 2: |
|
||||||
a, b = img.shape[1], img.shape[0] |
|
||||||
# downsample2 |
|
||||||
if random.random() < 0.75: |
|
||||||
sf1 = random.uniform(1, 2 * sf) |
|
||||||
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) |
|
||||||
k_shifted = shift_pixel(k, sf) |
|
||||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel |
|
||||||
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') |
|
||||||
img = img[0::sf, 0::sf, ...] # nearest downsampling |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 3: |
|
||||||
# downsample3 |
|
||||||
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 4: |
|
||||||
# add Gaussian noise |
|
||||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) |
|
||||||
|
|
||||||
elif i == 5: |
|
||||||
# add JPEG noise |
|
||||||
if random.random() < jpeg_prob: |
|
||||||
img = add_JPEG_noise(img) |
|
||||||
|
|
||||||
elif i == 6: |
|
||||||
# add processed camera sensor noise |
|
||||||
if random.random() < isp_prob and isp_model is not None: |
|
||||||
with torch.no_grad(): |
|
||||||
img, hq = isp_model.forward(img.copy(), hq) |
|
||||||
|
|
||||||
# add final JPEG compression noise |
|
||||||
img = add_JPEG_noise(img) |
|
||||||
|
|
||||||
# random crop |
|
||||||
img, hq = random_crop(img, hq, sf_ori, lq_patchsize) |
|
||||||
|
|
||||||
return img, hq |
|
||||||
|
|
||||||
|
|
||||||
# todo no isp_model? |
|
||||||
def degradation_bsrgan_variant(image, sf=4, isp_model=None): |
|
||||||
""" |
|
||||||
This is the degradation model of BSRGAN from the paper |
|
||||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" |
|
||||||
---------- |
|
||||||
sf: scale factor |
|
||||||
isp_model: camera ISP model |
|
||||||
Returns |
|
||||||
------- |
|
||||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
||||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
||||||
""" |
|
||||||
image = util.uint2single(image) |
|
||||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 |
|
||||||
sf_ori = sf |
|
||||||
|
|
||||||
h1, w1 = image.shape[:2] |
|
||||||
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop |
|
||||||
h, w = image.shape[:2] |
|
||||||
|
|
||||||
hq = image.copy() |
|
||||||
|
|
||||||
if sf == 4 and random.random() < scale2_prob: # downsample1 |
|
||||||
if np.random.rand() < 0.5: |
|
||||||
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
image = util.imresize_np(image, 1 / 2, True) |
|
||||||
image = np.clip(image, 0.0, 1.0) |
|
||||||
sf = 2 |
|
||||||
|
|
||||||
shuffle_order = random.sample(range(7), 7) |
|
||||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) |
|
||||||
if idx1 > idx2: # keep downsample3 last |
|
||||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] |
|
||||||
|
|
||||||
for i in shuffle_order: |
|
||||||
|
|
||||||
if i == 0: |
|
||||||
image = add_blur(image, sf=sf) |
|
||||||
|
|
||||||
elif i == 1: |
|
||||||
image = add_blur(image, sf=sf) |
|
||||||
|
|
||||||
elif i == 2: |
|
||||||
a, b = image.shape[1], image.shape[0] |
|
||||||
# downsample2 |
|
||||||
if random.random() < 0.75: |
|
||||||
sf1 = random.uniform(1, 2 * sf) |
|
||||||
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) |
|
||||||
k_shifted = shift_pixel(k, sf) |
|
||||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel |
|
||||||
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') |
|
||||||
image = image[0::sf, 0::sf, ...] # nearest downsampling |
|
||||||
image = np.clip(image, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 3: |
|
||||||
# downsample3 |
|
||||||
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) |
|
||||||
image = np.clip(image, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 4: |
|
||||||
# add Gaussian noise |
|
||||||
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) |
|
||||||
|
|
||||||
elif i == 5: |
|
||||||
# add JPEG noise |
|
||||||
if random.random() < jpeg_prob: |
|
||||||
image = add_JPEG_noise(image) |
|
||||||
|
|
||||||
# elif i == 6: |
|
||||||
# # add processed camera sensor noise |
|
||||||
# if random.random() < isp_prob and isp_model is not None: |
|
||||||
# with torch.no_grad(): |
|
||||||
# img, hq = isp_model.forward(img.copy(), hq) |
|
||||||
|
|
||||||
# add final JPEG compression noise |
|
||||||
image = add_JPEG_noise(image) |
|
||||||
image = util.single2uint(image) |
|
||||||
example = {"image":image} |
|
||||||
return example |
|
||||||
|
|
||||||
|
|
||||||
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... |
|
||||||
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None): |
|
||||||
""" |
|
||||||
This is an extended degradation model by combining |
|
||||||
the degradation models of BSRGAN and Real-ESRGAN |
|
||||||
---------- |
|
||||||
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) |
|
||||||
sf: scale factor |
|
||||||
use_shuffle: the degradation shuffle |
|
||||||
use_sharp: sharpening the img |
|
||||||
Returns |
|
||||||
------- |
|
||||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
||||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
||||||
""" |
|
||||||
|
|
||||||
h1, w1 = img.shape[:2] |
|
||||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop |
|
||||||
h, w = img.shape[:2] |
|
||||||
|
|
||||||
if h < lq_patchsize * sf or w < lq_patchsize * sf: |
|
||||||
raise ValueError(f'img size ({h1}X{w1}) is too small!') |
|
||||||
|
|
||||||
if use_sharp: |
|
||||||
img = add_sharpening(img) |
|
||||||
hq = img.copy() |
|
||||||
|
|
||||||
if random.random() < shuffle_prob: |
|
||||||
shuffle_order = random.sample(range(13), 13) |
|
||||||
else: |
|
||||||
shuffle_order = list(range(13)) |
|
||||||
# local shuffle for noise, JPEG is always the last one |
|
||||||
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) |
|
||||||
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) |
|
||||||
|
|
||||||
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 |
|
||||||
|
|
||||||
for i in shuffle_order: |
|
||||||
if i == 0: |
|
||||||
img = add_blur(img, sf=sf) |
|
||||||
elif i == 1: |
|
||||||
img = add_resize(img, sf=sf) |
|
||||||
elif i == 2: |
|
||||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) |
|
||||||
elif i == 3: |
|
||||||
if random.random() < poisson_prob: |
|
||||||
img = add_Poisson_noise(img) |
|
||||||
elif i == 4: |
|
||||||
if random.random() < speckle_prob: |
|
||||||
img = add_speckle_noise(img) |
|
||||||
elif i == 5: |
|
||||||
if random.random() < isp_prob and isp_model is not None: |
|
||||||
with torch.no_grad(): |
|
||||||
img, hq = isp_model.forward(img.copy(), hq) |
|
||||||
elif i == 6: |
|
||||||
img = add_JPEG_noise(img) |
|
||||||
elif i == 7: |
|
||||||
img = add_blur(img, sf=sf) |
|
||||||
elif i == 8: |
|
||||||
img = add_resize(img, sf=sf) |
|
||||||
elif i == 9: |
|
||||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) |
|
||||||
elif i == 10: |
|
||||||
if random.random() < poisson_prob: |
|
||||||
img = add_Poisson_noise(img) |
|
||||||
elif i == 11: |
|
||||||
if random.random() < speckle_prob: |
|
||||||
img = add_speckle_noise(img) |
|
||||||
elif i == 12: |
|
||||||
if random.random() < isp_prob and isp_model is not None: |
|
||||||
with torch.no_grad(): |
|
||||||
img, hq = isp_model.forward(img.copy(), hq) |
|
||||||
else: |
|
||||||
print('check the shuffle!') |
|
||||||
|
|
||||||
# resize to desired size |
|
||||||
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
|
|
||||||
# add final JPEG compression noise |
|
||||||
img = add_JPEG_noise(img) |
|
||||||
|
|
||||||
# random crop |
|
||||||
img, hq = random_crop(img, hq, sf, lq_patchsize) |
|
||||||
|
|
||||||
return img, hq |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__': |
|
||||||
print("hey") |
|
||||||
img = util.imread_uint('utils/test.png', 3) |
|
||||||
print(img) |
|
||||||
img = util.uint2single(img) |
|
||||||
print(img) |
|
||||||
img = img[:448, :448] |
|
||||||
h = img.shape[0] // 4 |
|
||||||
print("resizing to", h) |
|
||||||
sf = 4 |
|
||||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf) |
|
||||||
for i in range(20): |
|
||||||
print(i) |
|
||||||
img_lq = deg_fn(img) |
|
||||||
print(img_lq) |
|
||||||
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"] |
|
||||||
print(img_lq.shape) |
|
||||||
print("bicubic", img_lq_bicubic.shape) |
|
||||||
print(img_hq.shape) |
|
||||||
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), |
|
||||||
interpolation=0) |
|
||||||
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), |
|
||||||
interpolation=0) |
|
||||||
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) |
|
||||||
util.imsave(img_concat, str(i) + '.png') |
|
||||||
|
|
||||||
|
|
@ -1,651 +0,0 @@ |
|||||||
# -*- coding: utf-8 -*- |
|
||||||
import numpy as np |
|
||||||
import cv2 |
|
||||||
import torch |
|
||||||
|
|
||||||
from functools import partial |
|
||||||
import random |
|
||||||
from scipy import ndimage |
|
||||||
import scipy |
|
||||||
import scipy.stats as ss |
|
||||||
from scipy.interpolate import interp2d |
|
||||||
from scipy.linalg import orth |
|
||||||
import albumentations |
|
||||||
|
|
||||||
import ldm.modules.image_degradation.utils_image as util |
|
||||||
|
|
||||||
""" |
|
||||||
# -------------------------------------------- |
|
||||||
# Super-Resolution |
|
||||||
# -------------------------------------------- |
|
||||||
# |
|
||||||
# Kai Zhang (cskaizhang@gmail.com) |
|
||||||
# https://github.com/cszn |
|
||||||
# From 2019/03--2021/08 |
|
||||||
# -------------------------------------------- |
|
||||||
""" |
|
||||||
|
|
||||||
def modcrop_np(img, sf): |
|
||||||
''' |
|
||||||
Args: |
|
||||||
img: numpy image, WxH or WxHxC |
|
||||||
sf: scale factor |
|
||||||
Return: |
|
||||||
cropped image |
|
||||||
''' |
|
||||||
w, h = img.shape[:2] |
|
||||||
im = np.copy(img) |
|
||||||
return im[:w - w % sf, :h - h % sf, ...] |
|
||||||
|
|
||||||
|
|
||||||
""" |
|
||||||
# -------------------------------------------- |
|
||||||
# anisotropic Gaussian kernels |
|
||||||
# -------------------------------------------- |
|
||||||
""" |
|
||||||
|
|
||||||
|
|
||||||
def analytic_kernel(k): |
|
||||||
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" |
|
||||||
k_size = k.shape[0] |
|
||||||
# Calculate the big kernels size |
|
||||||
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) |
|
||||||
# Loop over the small kernel to fill the big one |
|
||||||
for r in range(k_size): |
|
||||||
for c in range(k_size): |
|
||||||
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k |
|
||||||
# Crop the edges of the big kernel to ignore very small values and increase run time of SR |
|
||||||
crop = k_size // 2 |
|
||||||
cropped_big_k = big_k[crop:-crop, crop:-crop] |
|
||||||
# Normalize to 1 |
|
||||||
return cropped_big_k / cropped_big_k.sum() |
|
||||||
|
|
||||||
|
|
||||||
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): |
|
||||||
""" generate an anisotropic Gaussian kernel |
|
||||||
Args: |
|
||||||
ksize : e.g., 15, kernel size |
|
||||||
theta : [0, pi], rotation angle range |
|
||||||
l1 : [0.1,50], scaling of eigenvalues |
|
||||||
l2 : [0.1,l1], scaling of eigenvalues |
|
||||||
If l1 = l2, will get an isotropic Gaussian kernel. |
|
||||||
Returns: |
|
||||||
k : kernel |
|
||||||
""" |
|
||||||
|
|
||||||
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) |
|
||||||
V = np.array([[v[0], v[1]], [v[1], -v[0]]]) |
|
||||||
D = np.array([[l1, 0], [0, l2]]) |
|
||||||
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) |
|
||||||
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) |
|
||||||
|
|
||||||
return k |
|
||||||
|
|
||||||
|
|
||||||
def gm_blur_kernel(mean, cov, size=15): |
|
||||||
center = size / 2.0 + 0.5 |
|
||||||
k = np.zeros([size, size]) |
|
||||||
for y in range(size): |
|
||||||
for x in range(size): |
|
||||||
cy = y - center + 1 |
|
||||||
cx = x - center + 1 |
|
||||||
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) |
|
||||||
|
|
||||||
k = k / np.sum(k) |
|
||||||
return k |
|
||||||
|
|
||||||
|
|
||||||
def shift_pixel(x, sf, upper_left=True): |
|
||||||
"""shift pixel for super-resolution with different scale factors |
|
||||||
Args: |
|
||||||
x: WxHxC or WxH |
|
||||||
sf: scale factor |
|
||||||
upper_left: shift direction |
|
||||||
""" |
|
||||||
h, w = x.shape[:2] |
|
||||||
shift = (sf - 1) * 0.5 |
|
||||||
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) |
|
||||||
if upper_left: |
|
||||||
x1 = xv + shift |
|
||||||
y1 = yv + shift |
|
||||||
else: |
|
||||||
x1 = xv - shift |
|
||||||
y1 = yv - shift |
|
||||||
|
|
||||||
x1 = np.clip(x1, 0, w - 1) |
|
||||||
y1 = np.clip(y1, 0, h - 1) |
|
||||||
|
|
||||||
if x.ndim == 2: |
|
||||||
x = interp2d(xv, yv, x)(x1, y1) |
|
||||||
if x.ndim == 3: |
|
||||||
for i in range(x.shape[-1]): |
|
||||||
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) |
|
||||||
|
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def blur(x, k): |
|
||||||
''' |
|
||||||
x: image, NxcxHxW |
|
||||||
k: kernel, Nx1xhxw |
|
||||||
''' |
|
||||||
n, c = x.shape[:2] |
|
||||||
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 |
|
||||||
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') |
|
||||||
k = k.repeat(1, c, 1, 1) |
|
||||||
k = k.view(-1, 1, k.shape[2], k.shape[3]) |
|
||||||
x = x.view(1, -1, x.shape[2], x.shape[3]) |
|
||||||
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) |
|
||||||
x = x.view(n, c, x.shape[2], x.shape[3]) |
|
||||||
|
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): |
|
||||||
"""" |
|
||||||
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator |
|
||||||
# Kai Zhang |
|
||||||
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var |
|
||||||
# max_var = 2.5 * sf |
|
||||||
""" |
|
||||||
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix |
|
||||||
lambda_1 = min_var + np.random.rand() * (max_var - min_var) |
|
||||||
lambda_2 = min_var + np.random.rand() * (max_var - min_var) |
|
||||||
theta = np.random.rand() * np.pi # random theta |
|
||||||
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 |
|
||||||
|
|
||||||
# Set COV matrix using Lambdas and Theta |
|
||||||
LAMBDA = np.diag([lambda_1, lambda_2]) |
|
||||||
Q = np.array([[np.cos(theta), -np.sin(theta)], |
|
||||||
[np.sin(theta), np.cos(theta)]]) |
|
||||||
SIGMA = Q @ LAMBDA @ Q.T |
|
||||||
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] |
|
||||||
|
|
||||||
# Set expectation position (shifting kernel for aligned image) |
|
||||||
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) |
|
||||||
MU = MU[None, None, :, None] |
|
||||||
|
|
||||||
# Create meshgrid for Gaussian |
|
||||||
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) |
|
||||||
Z = np.stack([X, Y], 2)[:, :, :, None] |
|
||||||
|
|
||||||
# Calcualte Gaussian for every pixel of the kernel |
|
||||||
ZZ = Z - MU |
|
||||||
ZZ_t = ZZ.transpose(0, 1, 3, 2) |
|
||||||
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) |
|
||||||
|
|
||||||
# shift the kernel so it will be centered |
|
||||||
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) |
|
||||||
|
|
||||||
# Normalize the kernel and return |
|
||||||
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered) |
|
||||||
kernel = raw_kernel / np.sum(raw_kernel) |
|
||||||
return kernel |
|
||||||
|
|
||||||
|
|
||||||
def fspecial_gaussian(hsize, sigma): |
|
||||||
hsize = [hsize, hsize] |
|
||||||
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] |
|
||||||
std = sigma |
|
||||||
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) |
|
||||||
arg = -(x * x + y * y) / (2 * std * std) |
|
||||||
h = np.exp(arg) |
|
||||||
h[h < scipy.finfo(float).eps * h.max()] = 0 |
|
||||||
sumh = h.sum() |
|
||||||
if sumh != 0: |
|
||||||
h = h / sumh |
|
||||||
return h |
|
||||||
|
|
||||||
|
|
||||||
def fspecial_laplacian(alpha): |
|
||||||
alpha = max([0, min([alpha, 1])]) |
|
||||||
h1 = alpha / (alpha + 1) |
|
||||||
h2 = (1 - alpha) / (alpha + 1) |
|
||||||
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] |
|
||||||
h = np.array(h) |
|
||||||
return h |
|
||||||
|
|
||||||
|
|
||||||
def fspecial(filter_type, *args, **kwargs): |
|
||||||
''' |
|
||||||
python code from: |
|
||||||
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py |
|
||||||
''' |
|
||||||
if filter_type == 'gaussian': |
|
||||||
return fspecial_gaussian(*args, **kwargs) |
|
||||||
if filter_type == 'laplacian': |
|
||||||
return fspecial_laplacian(*args, **kwargs) |
|
||||||
|
|
||||||
|
|
||||||
""" |
|
||||||
# -------------------------------------------- |
|
||||||
# degradation models |
|
||||||
# -------------------------------------------- |
|
||||||
""" |
|
||||||
|
|
||||||
|
|
||||||
def bicubic_degradation(x, sf=3): |
|
||||||
''' |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1] |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
bicubicly downsampled LR image |
|
||||||
''' |
|
||||||
x = util.imresize_np(x, scale=1 / sf) |
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def srmd_degradation(x, k, sf=3): |
|
||||||
''' blur + bicubic downsampling |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1] |
|
||||||
k: hxw, double |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
downsampled LR image |
|
||||||
Reference: |
|
||||||
@inproceedings{zhang2018learning, |
|
||||||
title={Learning a single convolutional super-resolution network for multiple degradations}, |
|
||||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, |
|
||||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
||||||
pages={3262--3271}, |
|
||||||
year={2018} |
|
||||||
} |
|
||||||
''' |
|
||||||
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' |
|
||||||
x = bicubic_degradation(x, sf=sf) |
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def dpsr_degradation(x, k, sf=3): |
|
||||||
''' bicubic downsampling + blur |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1] |
|
||||||
k: hxw, double |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
downsampled LR image |
|
||||||
Reference: |
|
||||||
@inproceedings{zhang2019deep, |
|
||||||
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, |
|
||||||
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, |
|
||||||
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
||||||
pages={1671--1681}, |
|
||||||
year={2019} |
|
||||||
} |
|
||||||
''' |
|
||||||
x = bicubic_degradation(x, sf=sf) |
|
||||||
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
||||||
return x |
|
||||||
|
|
||||||
|
|
||||||
def classical_degradation(x, k, sf=3): |
|
||||||
''' blur + downsampling |
|
||||||
Args: |
|
||||||
x: HxWxC image, [0, 1]/[0, 255] |
|
||||||
k: hxw, double |
|
||||||
sf: down-scale factor |
|
||||||
Return: |
|
||||||
downsampled LR image |
|
||||||
''' |
|
||||||
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
||||||
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) |
|
||||||
st = 0 |
|
||||||
return x[st::sf, st::sf, ...] |
|
||||||
|
|
||||||
|
|
||||||
def add_sharpening(img, weight=0.5, radius=50, threshold=10): |
|
||||||
"""USM sharpening. borrowed from real-ESRGAN |
|
||||||
Input image: I; Blurry image: B. |
|
||||||
1. K = I + weight * (I - B) |
|
||||||
2. Mask = 1 if abs(I - B) > threshold, else: 0 |
|
||||||
3. Blur mask: |
|
||||||
4. Out = Mask * K + (1 - Mask) * I |
|
||||||
Args: |
|
||||||
img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. |
|
||||||
weight (float): Sharp weight. Default: 1. |
|
||||||
radius (float): Kernel size of Gaussian blur. Default: 50. |
|
||||||
threshold (int): |
|
||||||
""" |
|
||||||
if radius % 2 == 0: |
|
||||||
radius += 1 |
|
||||||
blur = cv2.GaussianBlur(img, (radius, radius), 0) |
|
||||||
residual = img - blur |
|
||||||
mask = np.abs(residual) * 255 > threshold |
|
||||||
mask = mask.astype('float32') |
|
||||||
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) |
|
||||||
|
|
||||||
K = img + weight * residual |
|
||||||
K = np.clip(K, 0, 1) |
|
||||||
return soft_mask * K + (1 - soft_mask) * img |
|
||||||
|
|
||||||
|
|
||||||
def add_blur(img, sf=4): |
|
||||||
wd2 = 4.0 + sf |
|
||||||
wd = 2.0 + 0.2 * sf |
|
||||||
|
|
||||||
wd2 = wd2/4 |
|
||||||
wd = wd/4 |
|
||||||
|
|
||||||
if random.random() < 0.5: |
|
||||||
l1 = wd2 * random.random() |
|
||||||
l2 = wd2 * random.random() |
|
||||||
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) |
|
||||||
else: |
|
||||||
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random()) |
|
||||||
img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror') |
|
||||||
|
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_resize(img, sf=4): |
|
||||||
rnum = np.random.rand() |
|
||||||
if rnum > 0.8: # up |
|
||||||
sf1 = random.uniform(1, 2) |
|
||||||
elif rnum < 0.7: # down |
|
||||||
sf1 = random.uniform(0.5 / sf, 1) |
|
||||||
else: |
|
||||||
sf1 = 1.0 |
|
||||||
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
|
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): |
|
||||||
# noise_level = random.randint(noise_level1, noise_level2) |
|
||||||
# rnum = np.random.rand() |
|
||||||
# if rnum > 0.6: # add color Gaussian noise |
|
||||||
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
||||||
# elif rnum < 0.4: # add grayscale Gaussian noise |
|
||||||
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
||||||
# else: # add noise |
|
||||||
# L = noise_level2 / 255. |
|
||||||
# D = np.diag(np.random.rand(3)) |
|
||||||
# U = orth(np.random.rand(3, 3)) |
|
||||||
# conv = np.dot(np.dot(np.transpose(U), D), U) |
|
||||||
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
||||||
# img = np.clip(img, 0.0, 1.0) |
|
||||||
# return img |
|
||||||
|
|
||||||
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): |
|
||||||
noise_level = random.randint(noise_level1, noise_level2) |
|
||||||
rnum = np.random.rand() |
|
||||||
if rnum > 0.6: # add color Gaussian noise |
|
||||||
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
||||||
elif rnum < 0.4: # add grayscale Gaussian noise |
|
||||||
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
||||||
else: # add noise |
|
||||||
L = noise_level2 / 255. |
|
||||||
D = np.diag(np.random.rand(3)) |
|
||||||
U = orth(np.random.rand(3, 3)) |
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U) |
|
||||||
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_speckle_noise(img, noise_level1=2, noise_level2=25): |
|
||||||
noise_level = random.randint(noise_level1, noise_level2) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
rnum = random.random() |
|
||||||
if rnum > 0.6: |
|
||||||
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
||||||
elif rnum < 0.4: |
|
||||||
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
||||||
else: |
|
||||||
L = noise_level2 / 255. |
|
||||||
D = np.diag(np.random.rand(3)) |
|
||||||
U = orth(np.random.rand(3, 3)) |
|
||||||
conv = np.dot(np.dot(np.transpose(U), D), U) |
|
||||||
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_Poisson_noise(img): |
|
||||||
img = np.clip((img * 255.0).round(), 0, 255) / 255. |
|
||||||
vals = 10 ** (2 * random.random() + 2.0) # [2, 4] |
|
||||||
if random.random() < 0.5: |
|
||||||
img = np.random.poisson(img * vals).astype(np.float32) / vals |
|
||||||
else: |
|
||||||
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) |
|
||||||
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. |
|
||||||
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray |
|
||||||
img += noise_gray[:, :, np.newaxis] |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_JPEG_noise(img): |
|
||||||
quality_factor = random.randint(80, 95) |
|
||||||
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) |
|
||||||
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) |
|
||||||
img = cv2.imdecode(encimg, 1) |
|
||||||
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def random_crop(lq, hq, sf=4, lq_patchsize=64): |
|
||||||
h, w = lq.shape[:2] |
|
||||||
rnd_h = random.randint(0, h - lq_patchsize) |
|
||||||
rnd_w = random.randint(0, w - lq_patchsize) |
|
||||||
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] |
|
||||||
|
|
||||||
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) |
|
||||||
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] |
|
||||||
return lq, hq |
|
||||||
|
|
||||||
|
|
||||||
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): |
|
||||||
""" |
|
||||||
This is the degradation model of BSRGAN from the paper |
|
||||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" |
|
||||||
---------- |
|
||||||
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) |
|
||||||
sf: scale factor |
|
||||||
isp_model: camera ISP model |
|
||||||
Returns |
|
||||||
------- |
|
||||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
||||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
||||||
""" |
|
||||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 |
|
||||||
sf_ori = sf |
|
||||||
|
|
||||||
h1, w1 = img.shape[:2] |
|
||||||
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop |
|
||||||
h, w = img.shape[:2] |
|
||||||
|
|
||||||
if h < lq_patchsize * sf or w < lq_patchsize * sf: |
|
||||||
raise ValueError(f'img size ({h1}X{w1}) is too small!') |
|
||||||
|
|
||||||
hq = img.copy() |
|
||||||
|
|
||||||
if sf == 4 and random.random() < scale2_prob: # downsample1 |
|
||||||
if np.random.rand() < 0.5: |
|
||||||
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
img = util.imresize_np(img, 1 / 2, True) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
sf = 2 |
|
||||||
|
|
||||||
shuffle_order = random.sample(range(7), 7) |
|
||||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) |
|
||||||
if idx1 > idx2: # keep downsample3 last |
|
||||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] |
|
||||||
|
|
||||||
for i in shuffle_order: |
|
||||||
|
|
||||||
if i == 0: |
|
||||||
img = add_blur(img, sf=sf) |
|
||||||
|
|
||||||
elif i == 1: |
|
||||||
img = add_blur(img, sf=sf) |
|
||||||
|
|
||||||
elif i == 2: |
|
||||||
a, b = img.shape[1], img.shape[0] |
|
||||||
# downsample2 |
|
||||||
if random.random() < 0.75: |
|
||||||
sf1 = random.uniform(1, 2 * sf) |
|
||||||
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) |
|
||||||
k_shifted = shift_pixel(k, sf) |
|
||||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel |
|
||||||
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') |
|
||||||
img = img[0::sf, 0::sf, ...] # nearest downsampling |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 3: |
|
||||||
# downsample3 |
|
||||||
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) |
|
||||||
img = np.clip(img, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 4: |
|
||||||
# add Gaussian noise |
|
||||||
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) |
|
||||||
|
|
||||||
elif i == 5: |
|
||||||
# add JPEG noise |
|
||||||
if random.random() < jpeg_prob: |
|
||||||
img = add_JPEG_noise(img) |
|
||||||
|
|
||||||
elif i == 6: |
|
||||||
# add processed camera sensor noise |
|
||||||
if random.random() < isp_prob and isp_model is not None: |
|
||||||
with torch.no_grad(): |
|
||||||
img, hq = isp_model.forward(img.copy(), hq) |
|
||||||
|
|
||||||
# add final JPEG compression noise |
|
||||||
img = add_JPEG_noise(img) |
|
||||||
|
|
||||||
# random crop |
|
||||||
img, hq = random_crop(img, hq, sf_ori, lq_patchsize) |
|
||||||
|
|
||||||
return img, hq |
|
||||||
|
|
||||||
|
|
||||||
# todo no isp_model? |
|
||||||
def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False): |
|
||||||
""" |
|
||||||
This is the degradation model of BSRGAN from the paper |
|
||||||
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" |
|
||||||
---------- |
|
||||||
sf: scale factor |
|
||||||
isp_model: camera ISP model |
|
||||||
Returns |
|
||||||
------- |
|
||||||
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
||||||
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
||||||
""" |
|
||||||
image = util.uint2single(image) |
|
||||||
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 |
|
||||||
sf_ori = sf |
|
||||||
|
|
||||||
h1, w1 = image.shape[:2] |
|
||||||
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop |
|
||||||
h, w = image.shape[:2] |
|
||||||
|
|
||||||
hq = image.copy() |
|
||||||
|
|
||||||
if sf == 4 and random.random() < scale2_prob: # downsample1 |
|
||||||
if np.random.rand() < 0.5: |
|
||||||
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
image = util.imresize_np(image, 1 / 2, True) |
|
||||||
image = np.clip(image, 0.0, 1.0) |
|
||||||
sf = 2 |
|
||||||
|
|
||||||
shuffle_order = random.sample(range(7), 7) |
|
||||||
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) |
|
||||||
if idx1 > idx2: # keep downsample3 last |
|
||||||
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] |
|
||||||
|
|
||||||
for i in shuffle_order: |
|
||||||
|
|
||||||
if i == 0: |
|
||||||
image = add_blur(image, sf=sf) |
|
||||||
|
|
||||||
# elif i == 1: |
|
||||||
# image = add_blur(image, sf=sf) |
|
||||||
|
|
||||||
if i == 0: |
|
||||||
pass |
|
||||||
|
|
||||||
elif i == 2: |
|
||||||
a, b = image.shape[1], image.shape[0] |
|
||||||
# downsample2 |
|
||||||
if random.random() < 0.8: |
|
||||||
sf1 = random.uniform(1, 2 * sf) |
|
||||||
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), |
|
||||||
interpolation=random.choice([1, 2, 3])) |
|
||||||
else: |
|
||||||
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) |
|
||||||
k_shifted = shift_pixel(k, sf) |
|
||||||
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel |
|
||||||
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') |
|
||||||
image = image[0::sf, 0::sf, ...] # nearest downsampling |
|
||||||
|
|
||||||
image = np.clip(image, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 3: |
|
||||||
# downsample3 |
|
||||||
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) |
|
||||||
image = np.clip(image, 0.0, 1.0) |
|
||||||
|
|
||||||
elif i == 4: |
|
||||||
# add Gaussian noise |
|
||||||
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) |
|
||||||
|
|
||||||
elif i == 5: |
|
||||||
# add JPEG noise |
|
||||||
if random.random() < jpeg_prob: |
|
||||||
image = add_JPEG_noise(image) |
|
||||||
# |
|
||||||
# elif i == 6: |
|
||||||
# # add processed camera sensor noise |
|
||||||
# if random.random() < isp_prob and isp_model is not None: |
|
||||||
# with torch.no_grad(): |
|
||||||
# img, hq = isp_model.forward(img.copy(), hq) |
|
||||||
|
|
||||||
# add final JPEG compression noise |
|
||||||
image = add_JPEG_noise(image) |
|
||||||
image = util.single2uint(image) |
|
||||||
if up: |
|
||||||
image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then |
|
||||||
example = {"image": image} |
|
||||||
return example |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__': |
|
||||||
print("hey") |
|
||||||
img = util.imread_uint('utils/test.png', 3) |
|
||||||
img = img[:448, :448] |
|
||||||
h = img.shape[0] // 4 |
|
||||||
print("resizing to", h) |
|
||||||
sf = 4 |
|
||||||
deg_fn = partial(degradation_bsrgan_variant, sf=sf) |
|
||||||
for i in range(20): |
|
||||||
print(i) |
|
||||||
img_hq = img |
|
||||||
img_lq = deg_fn(img)["image"] |
|
||||||
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) |
|
||||||
print(img_lq) |
|
||||||
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"] |
|
||||||
print(img_lq.shape) |
|
||||||
print("bicubic", img_lq_bicubic.shape) |
|
||||||
print(img_hq.shape) |
|
||||||
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), |
|
||||||
interpolation=0) |
|
||||||
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), |
|
||||||
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), |
|
||||||
interpolation=0) |
|
||||||
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) |
|
||||||
util.imsave(img_concat, str(i) + '.png') |
|
Before Width: | Height: | Size: 431 KiB |
@ -1,916 +0,0 @@ |
|||||||
import os |
|
||||||
import math |
|
||||||
import random |
|
||||||
import numpy as np |
|
||||||
import torch |
|
||||||
import cv2 |
|
||||||
from torchvision.utils import make_grid |
|
||||||
from datetime import datetime |
|
||||||
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py |
|
||||||
|
|
||||||
|
|
||||||
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# Kai Zhang (github: https://github.com/cszn) |
|
||||||
# 03/Mar/2019 |
|
||||||
# -------------------------------------------- |
|
||||||
# https://github.com/twhui/SRGAN-pyTorch |
|
||||||
# https://github.com/xinntao/BasicSR |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] |
|
||||||
|
|
||||||
|
|
||||||
def is_image_file(filename): |
|
||||||
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) |
|
||||||
|
|
||||||
|
|
||||||
def get_timestamp(): |
|
||||||
return datetime.now().strftime('%y%m%d-%H%M%S') |
|
||||||
|
|
||||||
|
|
||||||
def imshow(x, title=None, cbar=False, figsize=None): |
|
||||||
plt.figure(figsize=figsize) |
|
||||||
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') |
|
||||||
if title: |
|
||||||
plt.title(title) |
|
||||||
if cbar: |
|
||||||
plt.colorbar() |
|
||||||
plt.show() |
|
||||||
|
|
||||||
|
|
||||||
def surf(Z, cmap='rainbow', figsize=None): |
|
||||||
plt.figure(figsize=figsize) |
|
||||||
ax3 = plt.axes(projection='3d') |
|
||||||
|
|
||||||
w, h = Z.shape[:2] |
|
||||||
xx = np.arange(0,w,1) |
|
||||||
yy = np.arange(0,h,1) |
|
||||||
X, Y = np.meshgrid(xx, yy) |
|
||||||
ax3.plot_surface(X,Y,Z,cmap=cmap) |
|
||||||
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) |
|
||||||
plt.show() |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# get image pathes |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
def get_image_paths(dataroot): |
|
||||||
paths = None # return None if dataroot is None |
|
||||||
if dataroot is not None: |
|
||||||
paths = sorted(_get_paths_from_images(dataroot)) |
|
||||||
return paths |
|
||||||
|
|
||||||
|
|
||||||
def _get_paths_from_images(path): |
|
||||||
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) |
|
||||||
images = [] |
|
||||||
for dirpath, _, fnames in sorted(os.walk(path)): |
|
||||||
for fname in sorted(fnames): |
|
||||||
if is_image_file(fname): |
|
||||||
img_path = os.path.join(dirpath, fname) |
|
||||||
images.append(img_path) |
|
||||||
assert images, '{:s} has no valid image file'.format(path) |
|
||||||
return images |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# split large images into small images |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): |
|
||||||
w, h = img.shape[:2] |
|
||||||
patches = [] |
|
||||||
if w > p_max and h > p_max: |
|
||||||
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) |
|
||||||
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) |
|
||||||
w1.append(w-p_size) |
|
||||||
h1.append(h-p_size) |
|
||||||
# print(w1) |
|
||||||
# print(h1) |
|
||||||
for i in w1: |
|
||||||
for j in h1: |
|
||||||
patches.append(img[i:i+p_size, j:j+p_size,:]) |
|
||||||
else: |
|
||||||
patches.append(img) |
|
||||||
|
|
||||||
return patches |
|
||||||
|
|
||||||
|
|
||||||
def imssave(imgs, img_path): |
|
||||||
""" |
|
||||||
imgs: list, N images of size WxHxC |
|
||||||
""" |
|
||||||
img_name, ext = os.path.splitext(os.path.basename(img_path)) |
|
||||||
|
|
||||||
for i, img in enumerate(imgs): |
|
||||||
if img.ndim == 3: |
|
||||||
img = img[:, :, [2, 1, 0]] |
|
||||||
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') |
|
||||||
cv2.imwrite(new_path, img) |
|
||||||
|
|
||||||
|
|
||||||
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): |
|
||||||
""" |
|
||||||
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), |
|
||||||
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) |
|
||||||
will be splitted. |
|
||||||
Args: |
|
||||||
original_dataroot: |
|
||||||
taget_dataroot: |
|
||||||
p_size: size of small images |
|
||||||
p_overlap: patch size in training is a good choice |
|
||||||
p_max: images with smaller size than (p_max)x(p_max) keep unchanged. |
|
||||||
""" |
|
||||||
paths = get_image_paths(original_dataroot) |
|
||||||
for img_path in paths: |
|
||||||
# img_name, ext = os.path.splitext(os.path.basename(img_path)) |
|
||||||
img = imread_uint(img_path, n_channels=n_channels) |
|
||||||
patches = patches_from_image(img, p_size, p_overlap, p_max) |
|
||||||
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) |
|
||||||
#if original_dataroot == taget_dataroot: |
|
||||||
#del img_path |
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# makedir |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
def mkdir(path): |
|
||||||
if not os.path.exists(path): |
|
||||||
os.makedirs(path) |
|
||||||
|
|
||||||
|
|
||||||
def mkdirs(paths): |
|
||||||
if isinstance(paths, str): |
|
||||||
mkdir(paths) |
|
||||||
else: |
|
||||||
for path in paths: |
|
||||||
mkdir(path) |
|
||||||
|
|
||||||
|
|
||||||
def mkdir_and_rename(path): |
|
||||||
if os.path.exists(path): |
|
||||||
new_name = path + '_archived_' + get_timestamp() |
|
||||||
print('Path already exists. Rename it to [{:s}]'.format(new_name)) |
|
||||||
os.rename(path, new_name) |
|
||||||
os.makedirs(path) |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# read image from path |
|
||||||
# opencv is fast, but read BGR numpy image |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# get uint8 image of size HxWxn_channles (RGB) |
|
||||||
# -------------------------------------------- |
|
||||||
def imread_uint(path, n_channels=3): |
|
||||||
# input: path |
|
||||||
# output: HxWx3(RGB or GGG), or HxWx1 (G) |
|
||||||
if n_channels == 1: |
|
||||||
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE |
|
||||||
img = np.expand_dims(img, axis=2) # HxWx1 |
|
||||||
elif n_channels == 3: |
|
||||||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G |
|
||||||
if img.ndim == 2: |
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG |
|
||||||
else: |
|
||||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# matlab's imwrite |
|
||||||
# -------------------------------------------- |
|
||||||
def imsave(img, img_path): |
|
||||||
img = np.squeeze(img) |
|
||||||
if img.ndim == 3: |
|
||||||
img = img[:, :, [2, 1, 0]] |
|
||||||
cv2.imwrite(img_path, img) |
|
||||||
|
|
||||||
def imwrite(img, img_path): |
|
||||||
img = np.squeeze(img) |
|
||||||
if img.ndim == 3: |
|
||||||
img = img[:, :, [2, 1, 0]] |
|
||||||
cv2.imwrite(img_path, img) |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# get single image of size HxWxn_channles (BGR) |
|
||||||
# -------------------------------------------- |
|
||||||
def read_img(path): |
|
||||||
# read image by cv2 |
|
||||||
# return: Numpy float32, HWC, BGR, [0,1] |
|
||||||
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE |
|
||||||
img = img.astype(np.float32) / 255. |
|
||||||
if img.ndim == 2: |
|
||||||
img = np.expand_dims(img, axis=2) |
|
||||||
# some images have 4 channels |
|
||||||
if img.shape[2] > 3: |
|
||||||
img = img[:, :, :3] |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# image format conversion |
|
||||||
# -------------------------------------------- |
|
||||||
# numpy(single) <---> numpy(unit) |
|
||||||
# numpy(single) <---> tensor |
|
||||||
# numpy(unit) <---> tensor |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# numpy(single) [0, 1] <---> numpy(unit) |
|
||||||
# -------------------------------------------- |
|
||||||
|
|
||||||
|
|
||||||
def uint2single(img): |
|
||||||
|
|
||||||
return np.float32(img/255.) |
|
||||||
|
|
||||||
|
|
||||||
def single2uint(img): |
|
||||||
|
|
||||||
return np.uint8((img.clip(0, 1)*255.).round()) |
|
||||||
|
|
||||||
|
|
||||||
def uint162single(img): |
|
||||||
|
|
||||||
return np.float32(img/65535.) |
|
||||||
|
|
||||||
|
|
||||||
def single2uint16(img): |
|
||||||
|
|
||||||
return np.uint16((img.clip(0, 1)*65535.).round()) |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# numpy(unit) (HxWxC or HxW) <---> tensor |
|
||||||
# -------------------------------------------- |
|
||||||
|
|
||||||
|
|
||||||
# convert uint to 4-dimensional torch tensor |
|
||||||
def uint2tensor4(img): |
|
||||||
if img.ndim == 2: |
|
||||||
img = np.expand_dims(img, axis=2) |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) |
|
||||||
|
|
||||||
|
|
||||||
# convert uint to 3-dimensional torch tensor |
|
||||||
def uint2tensor3(img): |
|
||||||
if img.ndim == 2: |
|
||||||
img = np.expand_dims(img, axis=2) |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) |
|
||||||
|
|
||||||
|
|
||||||
# convert 2/3/4-dimensional torch tensor to uint |
|
||||||
def tensor2uint(img): |
|
||||||
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() |
|
||||||
if img.ndim == 3: |
|
||||||
img = np.transpose(img, (1, 2, 0)) |
|
||||||
return np.uint8((img*255.0).round()) |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# numpy(single) (HxWxC) <---> tensor |
|
||||||
# -------------------------------------------- |
|
||||||
|
|
||||||
|
|
||||||
# convert single (HxWxC) to 3-dimensional torch tensor |
|
||||||
def single2tensor3(img): |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() |
|
||||||
|
|
||||||
|
|
||||||
# convert single (HxWxC) to 4-dimensional torch tensor |
|
||||||
def single2tensor4(img): |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) |
|
||||||
|
|
||||||
|
|
||||||
# convert torch tensor to single |
|
||||||
def tensor2single(img): |
|
||||||
img = img.data.squeeze().float().cpu().numpy() |
|
||||||
if img.ndim == 3: |
|
||||||
img = np.transpose(img, (1, 2, 0)) |
|
||||||
|
|
||||||
return img |
|
||||||
|
|
||||||
# convert torch tensor to single |
|
||||||
def tensor2single3(img): |
|
||||||
img = img.data.squeeze().float().cpu().numpy() |
|
||||||
if img.ndim == 3: |
|
||||||
img = np.transpose(img, (1, 2, 0)) |
|
||||||
elif img.ndim == 2: |
|
||||||
img = np.expand_dims(img, axis=2) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def single2tensor5(img): |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) |
|
||||||
|
|
||||||
|
|
||||||
def single32tensor5(img): |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) |
|
||||||
|
|
||||||
|
|
||||||
def single42tensor4(img): |
|
||||||
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() |
|
||||||
|
|
||||||
|
|
||||||
# from skimage.io import imread, imsave |
|
||||||
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): |
|
||||||
''' |
|
||||||
Converts a torch Tensor into an image Numpy array of BGR channel order |
|
||||||
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order |
|
||||||
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) |
|
||||||
''' |
|
||||||
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp |
|
||||||
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] |
|
||||||
n_dim = tensor.dim() |
|
||||||
if n_dim == 4: |
|
||||||
n_img = len(tensor) |
|
||||||
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() |
|
||||||
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR |
|
||||||
elif n_dim == 3: |
|
||||||
img_np = tensor.numpy() |
|
||||||
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR |
|
||||||
elif n_dim == 2: |
|
||||||
img_np = tensor.numpy() |
|
||||||
else: |
|
||||||
raise TypeError( |
|
||||||
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) |
|
||||||
if out_type == np.uint8: |
|
||||||
img_np = (img_np * 255.0).round() |
|
||||||
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default. |
|
||||||
return img_np.astype(out_type) |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# Augmentation, flipe and/or rotate |
|
||||||
# -------------------------------------------- |
|
||||||
# The following two are enough. |
|
||||||
# (1) augmet_img: numpy image of WxHxC or WxH |
|
||||||
# (2) augment_img_tensor4: tensor image 1xCxWxH |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
def augment_img(img, mode=0): |
|
||||||
'''Kai Zhang (github: https://github.com/cszn) |
|
||||||
''' |
|
||||||
if mode == 0: |
|
||||||
return img |
|
||||||
elif mode == 1: |
|
||||||
return np.flipud(np.rot90(img)) |
|
||||||
elif mode == 2: |
|
||||||
return np.flipud(img) |
|
||||||
elif mode == 3: |
|
||||||
return np.rot90(img, k=3) |
|
||||||
elif mode == 4: |
|
||||||
return np.flipud(np.rot90(img, k=2)) |
|
||||||
elif mode == 5: |
|
||||||
return np.rot90(img) |
|
||||||
elif mode == 6: |
|
||||||
return np.rot90(img, k=2) |
|
||||||
elif mode == 7: |
|
||||||
return np.flipud(np.rot90(img, k=3)) |
|
||||||
|
|
||||||
|
|
||||||
def augment_img_tensor4(img, mode=0): |
|
||||||
'''Kai Zhang (github: https://github.com/cszn) |
|
||||||
''' |
|
||||||
if mode == 0: |
|
||||||
return img |
|
||||||
elif mode == 1: |
|
||||||
return img.rot90(1, [2, 3]).flip([2]) |
|
||||||
elif mode == 2: |
|
||||||
return img.flip([2]) |
|
||||||
elif mode == 3: |
|
||||||
return img.rot90(3, [2, 3]) |
|
||||||
elif mode == 4: |
|
||||||
return img.rot90(2, [2, 3]).flip([2]) |
|
||||||
elif mode == 5: |
|
||||||
return img.rot90(1, [2, 3]) |
|
||||||
elif mode == 6: |
|
||||||
return img.rot90(2, [2, 3]) |
|
||||||
elif mode == 7: |
|
||||||
return img.rot90(3, [2, 3]).flip([2]) |
|
||||||
|
|
||||||
|
|
||||||
def augment_img_tensor(img, mode=0): |
|
||||||
'''Kai Zhang (github: https://github.com/cszn) |
|
||||||
''' |
|
||||||
img_size = img.size() |
|
||||||
img_np = img.data.cpu().numpy() |
|
||||||
if len(img_size) == 3: |
|
||||||
img_np = np.transpose(img_np, (1, 2, 0)) |
|
||||||
elif len(img_size) == 4: |
|
||||||
img_np = np.transpose(img_np, (2, 3, 1, 0)) |
|
||||||
img_np = augment_img(img_np, mode=mode) |
|
||||||
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) |
|
||||||
if len(img_size) == 3: |
|
||||||
img_tensor = img_tensor.permute(2, 0, 1) |
|
||||||
elif len(img_size) == 4: |
|
||||||
img_tensor = img_tensor.permute(3, 2, 0, 1) |
|
||||||
|
|
||||||
return img_tensor.type_as(img) |
|
||||||
|
|
||||||
|
|
||||||
def augment_img_np3(img, mode=0): |
|
||||||
if mode == 0: |
|
||||||
return img |
|
||||||
elif mode == 1: |
|
||||||
return img.transpose(1, 0, 2) |
|
||||||
elif mode == 2: |
|
||||||
return img[::-1, :, :] |
|
||||||
elif mode == 3: |
|
||||||
img = img[::-1, :, :] |
|
||||||
img = img.transpose(1, 0, 2) |
|
||||||
return img |
|
||||||
elif mode == 4: |
|
||||||
return img[:, ::-1, :] |
|
||||||
elif mode == 5: |
|
||||||
img = img[:, ::-1, :] |
|
||||||
img = img.transpose(1, 0, 2) |
|
||||||
return img |
|
||||||
elif mode == 6: |
|
||||||
img = img[:, ::-1, :] |
|
||||||
img = img[::-1, :, :] |
|
||||||
return img |
|
||||||
elif mode == 7: |
|
||||||
img = img[:, ::-1, :] |
|
||||||
img = img[::-1, :, :] |
|
||||||
img = img.transpose(1, 0, 2) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def augment_imgs(img_list, hflip=True, rot=True): |
|
||||||
# horizontal flip OR rotate |
|
||||||
hflip = hflip and random.random() < 0.5 |
|
||||||
vflip = rot and random.random() < 0.5 |
|
||||||
rot90 = rot and random.random() < 0.5 |
|
||||||
|
|
||||||
def _augment(img): |
|
||||||
if hflip: |
|
||||||
img = img[:, ::-1, :] |
|
||||||
if vflip: |
|
||||||
img = img[::-1, :, :] |
|
||||||
if rot90: |
|
||||||
img = img.transpose(1, 0, 2) |
|
||||||
return img |
|
||||||
|
|
||||||
return [_augment(img) for img in img_list] |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# modcrop and shave |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
def modcrop(img_in, scale): |
|
||||||
# img_in: Numpy, HWC or HW |
|
||||||
img = np.copy(img_in) |
|
||||||
if img.ndim == 2: |
|
||||||
H, W = img.shape |
|
||||||
H_r, W_r = H % scale, W % scale |
|
||||||
img = img[:H - H_r, :W - W_r] |
|
||||||
elif img.ndim == 3: |
|
||||||
H, W, C = img.shape |
|
||||||
H_r, W_r = H % scale, W % scale |
|
||||||
img = img[:H - H_r, :W - W_r, :] |
|
||||||
else: |
|
||||||
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def shave(img_in, border=0): |
|
||||||
# img_in: Numpy, HWC or HW |
|
||||||
img = np.copy(img_in) |
|
||||||
h, w = img.shape[:2] |
|
||||||
img = img[border:h-border, border:w-border] |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# image processing process on numpy image |
|
||||||
# channel_convert(in_c, tar_type, img_list): |
|
||||||
# rgb2ycbcr(img, only_y=True): |
|
||||||
# bgr2ycbcr(img, only_y=True): |
|
||||||
# ycbcr2rgb(img): |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
def rgb2ycbcr(img, only_y=True): |
|
||||||
'''same as matlab rgb2ycbcr |
|
||||||
only_y: only return Y channel |
|
||||||
Input: |
|
||||||
uint8, [0, 255] |
|
||||||
float, [0, 1] |
|
||||||
''' |
|
||||||
in_img_type = img.dtype |
|
||||||
img.astype(np.float32) |
|
||||||
if in_img_type != np.uint8: |
|
||||||
img *= 255. |
|
||||||
# convert |
|
||||||
if only_y: |
|
||||||
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 |
|
||||||
else: |
|
||||||
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], |
|
||||||
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] |
|
||||||
if in_img_type == np.uint8: |
|
||||||
rlt = rlt.round() |
|
||||||
else: |
|
||||||
rlt /= 255. |
|
||||||
return rlt.astype(in_img_type) |
|
||||||
|
|
||||||
|
|
||||||
def ycbcr2rgb(img): |
|
||||||
'''same as matlab ycbcr2rgb |
|
||||||
Input: |
|
||||||
uint8, [0, 255] |
|
||||||
float, [0, 1] |
|
||||||
''' |
|
||||||
in_img_type = img.dtype |
|
||||||
img.astype(np.float32) |
|
||||||
if in_img_type != np.uint8: |
|
||||||
img *= 255. |
|
||||||
# convert |
|
||||||
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], |
|
||||||
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] |
|
||||||
if in_img_type == np.uint8: |
|
||||||
rlt = rlt.round() |
|
||||||
else: |
|
||||||
rlt /= 255. |
|
||||||
return rlt.astype(in_img_type) |
|
||||||
|
|
||||||
|
|
||||||
def bgr2ycbcr(img, only_y=True): |
|
||||||
'''bgr version of rgb2ycbcr |
|
||||||
only_y: only return Y channel |
|
||||||
Input: |
|
||||||
uint8, [0, 255] |
|
||||||
float, [0, 1] |
|
||||||
''' |
|
||||||
in_img_type = img.dtype |
|
||||||
img.astype(np.float32) |
|
||||||
if in_img_type != np.uint8: |
|
||||||
img *= 255. |
|
||||||
# convert |
|
||||||
if only_y: |
|
||||||
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 |
|
||||||
else: |
|
||||||
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], |
|
||||||
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] |
|
||||||
if in_img_type == np.uint8: |
|
||||||
rlt = rlt.round() |
|
||||||
else: |
|
||||||
rlt /= 255. |
|
||||||
return rlt.astype(in_img_type) |
|
||||||
|
|
||||||
|
|
||||||
def channel_convert(in_c, tar_type, img_list): |
|
||||||
# conversion among BGR, gray and y |
|
||||||
if in_c == 3 and tar_type == 'gray': # BGR to gray |
|
||||||
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] |
|
||||||
return [np.expand_dims(img, axis=2) for img in gray_list] |
|
||||||
elif in_c == 3 and tar_type == 'y': # BGR to y |
|
||||||
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] |
|
||||||
return [np.expand_dims(img, axis=2) for img in y_list] |
|
||||||
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR |
|
||||||
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] |
|
||||||
else: |
|
||||||
return img_list |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# metric, PSNR and SSIM |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# PSNR |
|
||||||
# -------------------------------------------- |
|
||||||
def calculate_psnr(img1, img2, border=0): |
|
||||||
# img1 and img2 have range [0, 255] |
|
||||||
#img1 = img1.squeeze() |
|
||||||
#img2 = img2.squeeze() |
|
||||||
if not img1.shape == img2.shape: |
|
||||||
raise ValueError('Input images must have the same dimensions.') |
|
||||||
h, w = img1.shape[:2] |
|
||||||
img1 = img1[border:h-border, border:w-border] |
|
||||||
img2 = img2[border:h-border, border:w-border] |
|
||||||
|
|
||||||
img1 = img1.astype(np.float64) |
|
||||||
img2 = img2.astype(np.float64) |
|
||||||
mse = np.mean((img1 - img2)**2) |
|
||||||
if mse == 0: |
|
||||||
return float('inf') |
|
||||||
return 20 * math.log10(255.0 / math.sqrt(mse)) |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# SSIM |
|
||||||
# -------------------------------------------- |
|
||||||
def calculate_ssim(img1, img2, border=0): |
|
||||||
'''calculate SSIM |
|
||||||
the same outputs as MATLAB's |
|
||||||
img1, img2: [0, 255] |
|
||||||
''' |
|
||||||
#img1 = img1.squeeze() |
|
||||||
#img2 = img2.squeeze() |
|
||||||
if not img1.shape == img2.shape: |
|
||||||
raise ValueError('Input images must have the same dimensions.') |
|
||||||
h, w = img1.shape[:2] |
|
||||||
img1 = img1[border:h-border, border:w-border] |
|
||||||
img2 = img2[border:h-border, border:w-border] |
|
||||||
|
|
||||||
if img1.ndim == 2: |
|
||||||
return ssim(img1, img2) |
|
||||||
elif img1.ndim == 3: |
|
||||||
if img1.shape[2] == 3: |
|
||||||
ssims = [] |
|
||||||
for i in range(3): |
|
||||||
ssims.append(ssim(img1[:,:,i], img2[:,:,i])) |
|
||||||
return np.array(ssims).mean() |
|
||||||
elif img1.shape[2] == 1: |
|
||||||
return ssim(np.squeeze(img1), np.squeeze(img2)) |
|
||||||
else: |
|
||||||
raise ValueError('Wrong input image dimensions.') |
|
||||||
|
|
||||||
|
|
||||||
def ssim(img1, img2): |
|
||||||
C1 = (0.01 * 255)**2 |
|
||||||
C2 = (0.03 * 255)**2 |
|
||||||
|
|
||||||
img1 = img1.astype(np.float64) |
|
||||||
img2 = img2.astype(np.float64) |
|
||||||
kernel = cv2.getGaussianKernel(11, 1.5) |
|
||||||
window = np.outer(kernel, kernel.transpose()) |
|
||||||
|
|
||||||
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid |
|
||||||
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] |
|
||||||
mu1_sq = mu1**2 |
|
||||||
mu2_sq = mu2**2 |
|
||||||
mu1_mu2 = mu1 * mu2 |
|
||||||
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq |
|
||||||
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq |
|
||||||
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 |
|
||||||
|
|
||||||
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
||||||
(sigma1_sq + sigma2_sq + C2)) |
|
||||||
return ssim_map.mean() |
|
||||||
|
|
||||||
|
|
||||||
''' |
|
||||||
# -------------------------------------------- |
|
||||||
# matlab's bicubic imresize (numpy and torch) [0, 1] |
|
||||||
# -------------------------------------------- |
|
||||||
''' |
|
||||||
|
|
||||||
|
|
||||||
# matlab 'imresize' function, now only support 'bicubic' |
|
||||||
def cubic(x): |
|
||||||
absx = torch.abs(x) |
|
||||||
absx2 = absx**2 |
|
||||||
absx3 = absx**3 |
|
||||||
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ |
|
||||||
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) |
|
||||||
|
|
||||||
|
|
||||||
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): |
|
||||||
if (scale < 1) and (antialiasing): |
|
||||||
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width |
|
||||||
kernel_width = kernel_width / scale |
|
||||||
|
|
||||||
# Output-space coordinates |
|
||||||
x = torch.linspace(1, out_length, out_length) |
|
||||||
|
|
||||||
# Input-space coordinates. Calculate the inverse mapping such that 0.5 |
|
||||||
# in output space maps to 0.5 in input space, and 0.5+scale in output |
|
||||||
# space maps to 1.5 in input space. |
|
||||||
u = x / scale + 0.5 * (1 - 1 / scale) |
|
||||||
|
|
||||||
# What is the left-most pixel that can be involved in the computation? |
|
||||||
left = torch.floor(u - kernel_width / 2) |
|
||||||
|
|
||||||
# What is the maximum number of pixels that can be involved in the |
|
||||||
# computation? Note: it's OK to use an extra pixel here; if the |
|
||||||
# corresponding weights are all zero, it will be eliminated at the end |
|
||||||
# of this function. |
|
||||||
P = math.ceil(kernel_width) + 2 |
|
||||||
|
|
||||||
# The indices of the input pixels involved in computing the k-th output |
|
||||||
# pixel are in row k of the indices matrix. |
|
||||||
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( |
|
||||||
1, P).expand(out_length, P) |
|
||||||
|
|
||||||
# The weights used to compute the k-th output pixel are in row k of the |
|
||||||
# weights matrix. |
|
||||||
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices |
|
||||||
# apply cubic kernel |
|
||||||
if (scale < 1) and (antialiasing): |
|
||||||
weights = scale * cubic(distance_to_center * scale) |
|
||||||
else: |
|
||||||
weights = cubic(distance_to_center) |
|
||||||
# Normalize the weights matrix so that each row sums to 1. |
|
||||||
weights_sum = torch.sum(weights, 1).view(out_length, 1) |
|
||||||
weights = weights / weights_sum.expand(out_length, P) |
|
||||||
|
|
||||||
# If a column in weights is all zero, get rid of it. only consider the first and last column. |
|
||||||
weights_zero_tmp = torch.sum((weights == 0), 0) |
|
||||||
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): |
|
||||||
indices = indices.narrow(1, 1, P - 2) |
|
||||||
weights = weights.narrow(1, 1, P - 2) |
|
||||||
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): |
|
||||||
indices = indices.narrow(1, 0, P - 2) |
|
||||||
weights = weights.narrow(1, 0, P - 2) |
|
||||||
weights = weights.contiguous() |
|
||||||
indices = indices.contiguous() |
|
||||||
sym_len_s = -indices.min() + 1 |
|
||||||
sym_len_e = indices.max() - in_length |
|
||||||
indices = indices + sym_len_s - 1 |
|
||||||
return weights, indices, int(sym_len_s), int(sym_len_e) |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# imresize for tensor image [0, 1] |
|
||||||
# -------------------------------------------- |
|
||||||
def imresize(img, scale, antialiasing=True): |
|
||||||
# Now the scale should be the same for H and W |
|
||||||
# input: img: pytorch tensor, CHW or HW [0,1] |
|
||||||
# output: CHW or HW [0,1] w/o round |
|
||||||
need_squeeze = True if img.dim() == 2 else False |
|
||||||
if need_squeeze: |
|
||||||
img.unsqueeze_(0) |
|
||||||
in_C, in_H, in_W = img.size() |
|
||||||
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
||||||
kernel_width = 4 |
|
||||||
kernel = 'cubic' |
|
||||||
|
|
||||||
# Return the desired dimension order for performing the resize. The |
|
||||||
# strategy is to perform the resize first along the dimension with the |
|
||||||
# smallest scale factor. |
|
||||||
# Now we do not support this. |
|
||||||
|
|
||||||
# get weights and indices |
|
||||||
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
||||||
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
||||||
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
||||||
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
||||||
# process H dimension |
|
||||||
# symmetric copying |
|
||||||
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) |
|
||||||
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) |
|
||||||
|
|
||||||
sym_patch = img[:, :sym_len_Hs, :] |
|
||||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
||||||
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
sym_patch = img[:, -sym_len_He:, :] |
|
||||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
||||||
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
out_1 = torch.FloatTensor(in_C, out_H, in_W) |
|
||||||
kernel_width = weights_H.size(1) |
|
||||||
for i in range(out_H): |
|
||||||
idx = int(indices_H[i][0]) |
|
||||||
for j in range(out_C): |
|
||||||
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) |
|
||||||
|
|
||||||
# process W dimension |
|
||||||
# symmetric copying |
|
||||||
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) |
|
||||||
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) |
|
||||||
|
|
||||||
sym_patch = out_1[:, :, :sym_len_Ws] |
|
||||||
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
||||||
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
sym_patch = out_1[:, :, -sym_len_We:] |
|
||||||
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(2, inv_idx) |
|
||||||
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
out_2 = torch.FloatTensor(in_C, out_H, out_W) |
|
||||||
kernel_width = weights_W.size(1) |
|
||||||
for i in range(out_W): |
|
||||||
idx = int(indices_W[i][0]) |
|
||||||
for j in range(out_C): |
|
||||||
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) |
|
||||||
if need_squeeze: |
|
||||||
out_2.squeeze_() |
|
||||||
return out_2 |
|
||||||
|
|
||||||
|
|
||||||
# -------------------------------------------- |
|
||||||
# imresize for numpy image [0, 1] |
|
||||||
# -------------------------------------------- |
|
||||||
def imresize_np(img, scale, antialiasing=True): |
|
||||||
# Now the scale should be the same for H and W |
|
||||||
# input: img: Numpy, HWC or HW [0,1] |
|
||||||
# output: HWC or HW [0,1] w/o round |
|
||||||
img = torch.from_numpy(img) |
|
||||||
need_squeeze = True if img.dim() == 2 else False |
|
||||||
if need_squeeze: |
|
||||||
img.unsqueeze_(2) |
|
||||||
|
|
||||||
in_H, in_W, in_C = img.size() |
|
||||||
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
||||||
kernel_width = 4 |
|
||||||
kernel = 'cubic' |
|
||||||
|
|
||||||
# Return the desired dimension order for performing the resize. The |
|
||||||
# strategy is to perform the resize first along the dimension with the |
|
||||||
# smallest scale factor. |
|
||||||
# Now we do not support this. |
|
||||||
|
|
||||||
# get weights and indices |
|
||||||
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
||||||
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
||||||
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
||||||
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
||||||
# process H dimension |
|
||||||
# symmetric copying |
|
||||||
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) |
|
||||||
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) |
|
||||||
|
|
||||||
sym_patch = img[:sym_len_Hs, :, :] |
|
||||||
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
||||||
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
sym_patch = img[-sym_len_He:, :, :] |
|
||||||
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
||||||
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
out_1 = torch.FloatTensor(out_H, in_W, in_C) |
|
||||||
kernel_width = weights_H.size(1) |
|
||||||
for i in range(out_H): |
|
||||||
idx = int(indices_H[i][0]) |
|
||||||
for j in range(out_C): |
|
||||||
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) |
|
||||||
|
|
||||||
# process W dimension |
|
||||||
# symmetric copying |
|
||||||
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) |
|
||||||
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) |
|
||||||
|
|
||||||
sym_patch = out_1[:, :sym_len_Ws, :] |
|
||||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
||||||
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
sym_patch = out_1[:, -sym_len_We:, :] |
|
||||||
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
||||||
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
||||||
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
||||||
|
|
||||||
out_2 = torch.FloatTensor(out_H, out_W, in_C) |
|
||||||
kernel_width = weights_W.size(1) |
|
||||||
for i in range(out_W): |
|
||||||
idx = int(indices_W[i][0]) |
|
||||||
for j in range(out_C): |
|
||||||
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) |
|
||||||
if need_squeeze: |
|
||||||
out_2.squeeze_() |
|
||||||
|
|
||||||
return out_2.numpy() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__': |
|
||||||
print('---') |
|
||||||
# img = imread_uint('test.bmp', 3) |
|
||||||
# img = uint2single(img) |
|
||||||
# img_bicubic = imresize_np(img, 1/4) |
|
Loading…
Reference in new issue