comfyanonymous
8 months ago
2 changed files with 46 additions and 0 deletions
@ -0,0 +1,45 @@
|
||||
import torch |
||||
|
||||
class InstructPixToPixConditioning: |
||||
@classmethod |
||||
def INPUT_TYPES(s): |
||||
return {"required": {"positive": ("CONDITIONING", ), |
||||
"negative": ("CONDITIONING", ), |
||||
"vae": ("VAE", ), |
||||
"pixels": ("IMAGE", ), |
||||
}} |
||||
|
||||
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT") |
||||
RETURN_NAMES = ("positive", "negative", "latent") |
||||
FUNCTION = "encode" |
||||
|
||||
CATEGORY = "conditioning/instructpix2pix" |
||||
|
||||
def encode(self, positive, negative, pixels, vae): |
||||
x = (pixels.shape[1] // 8) * 8 |
||||
y = (pixels.shape[2] // 8) * 8 |
||||
|
||||
if pixels.shape[1] != x or pixels.shape[2] != y: |
||||
x_offset = (pixels.shape[1] % 8) // 2 |
||||
y_offset = (pixels.shape[2] % 8) // 2 |
||||
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:] |
||||
|
||||
concat_latent = vae.encode(pixels) |
||||
|
||||
out_latent = {} |
||||
out_latent["samples"] = torch.zeros_like(concat_latent) |
||||
|
||||
out = [] |
||||
for conditioning in [positive, negative]: |
||||
c = [] |
||||
for t in conditioning: |
||||
d = t[1].copy() |
||||
d["concat_latent_image"] = concat_latent |
||||
n = [t[0], d] |
||||
c.append(n) |
||||
out.append(c) |
||||
return (out[0], out[1], out_latent) |
||||
|
||||
NODE_CLASS_MAPPINGS = { |
||||
"InstructPixToPixConditioning": InstructPixToPixConditioning, |
||||
} |
Loading…
Reference in new issue