comfyanonymous
2 years ago
4 changed files with 36 additions and 128 deletions
@ -1,87 +0,0 @@
|
||||
from utils import waste_cpu_resource |
||||
class ExampleFolder: |
||||
""" |
||||
A example node |
||||
|
||||
Class methods |
||||
------------- |
||||
INPUT_TYPES (dict): |
||||
Tell the main program input parameters of nodes. |
||||
|
||||
Attributes |
||||
---------- |
||||
RETURN_TYPES (`tuple`): |
||||
The type of each element in the output tulple. |
||||
FUNCTION (`str`): |
||||
The name of the entry-point method which will return a tuple. For example, if `FUNCTION = "execute"` then it will run Example().execute() |
||||
OUTPUT_NODE ([`bool`]): |
||||
WIP |
||||
CATEGORY (`str`): |
||||
WIP |
||||
execute(s) -> tuple || None: |
||||
The entry point method. The name of this method must be the same as the value of property `FUNCTION`. |
||||
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`. |
||||
""" |
||||
def __init__(self): |
||||
pass |
||||
|
||||
@classmethod |
||||
def INPUT_TYPES(s): |
||||
""" |
||||
Return a dictionary which contains config for all input fields. |
||||
The type can be a string indicate a type or a list indicate selection. |
||||
Prebuilt types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". |
||||
Input in type "INT", "STRING" or "FLOAT" will be converted automatically from a string to the corresponse Python type before passing and have special config |
||||
Argument: s (`None`): Useless ig |
||||
Returns: `dict`: |
||||
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required` |
||||
- Value input_fields (`dict`): Contains input fields config: |
||||
* Key field_name (`string`): Name of a entry-point method's argument |
||||
* Value field_config (`tuple`): |
||||
+ First value is a string indicate the type of field or a list for selection. |
||||
+ Secound value is a config for type "INT", "STRING" or "FLOAT". |
||||
""" |
||||
return { |
||||
"required": { |
||||
"string_field": ("STRING", { |
||||
"multiline": True, #Allow the input to be multilined |
||||
"default": "Hello World!" |
||||
}), |
||||
"int_field": ("INT", { |
||||
"default": 0, |
||||
"min": 0, #Minimum value |
||||
"max": 4096, #Maximum value |
||||
"step": 64 #Slider's step |
||||
}), |
||||
#Like INT |
||||
"print_to_screen": (["Enable", "Disable"], {"default": "Enable"}) |
||||
}, |
||||
#"hidden": { |
||||
# "prompt": "PROMPT", |
||||
# "extra_pnginfo": "EXTRA_PNGINFO" |
||||
#}, |
||||
} |
||||
|
||||
RETURN_TYPES = ("STRING", "INT", "FLOAT", "STRING") |
||||
FUNCTION = "test" |
||||
|
||||
#OUTPUT_NODE = True |
||||
|
||||
CATEGORY = "Example" |
||||
|
||||
def test(self, string_field, int_field, print_to_screen): |
||||
rand_float = waste_cpu_resource() |
||||
if print_to_screen == "Enable": |
||||
print(f"""Your input contains: |
||||
string_field aka input text: {string_field} |
||||
int_field: {int_field} |
||||
A random float number: {rand_float} |
||||
""") |
||||
return (string_field, int_field, rand_float, print_to_screen) |
||||
|
||||
NODE_CLASS_MAPPINGS = { |
||||
"ExampleFolder": ExampleFolder |
||||
} |
||||
""" |
||||
NODE_CLASS_MAPPINGS (dict): A dictionary contains all nodes you want to export |
||||
""" |
@ -1,4 +0,0 @@
|
||||
import torch |
||||
def waste_cpu_resource(): |
||||
x = torch.rand(1, 1e6, dtype=torch.float64).cpu() |
||||
return x.numpy()[0, 1] |
Loading…
Reference in new issue