|
|
|
import torch
|
|
|
|
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
|
|
|
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
|
|
|
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
|
|
|
from comfy.ldm.modules.diffusionmodules.openaimodel import Timestep
|
|
|
|
import comfy.model_management
|
|
|
|
import comfy.conds
|
|
|
|
import numpy as np
|
|
|
|
from enum import Enum
|
|
|
|
from . import utils
|
|
|
|
|
|
|
|
class ModelType(Enum):
|
|
|
|
EPS = 1
|
|
|
|
V_PREDICTION = 2
|
|
|
|
|
|
|
|
|
|
|
|
#NOTE: all this sampling stuff will be moved
|
|
|
|
class EPS:
|
|
|
|
def calculate_input(self, sigma, noise):
|
|
|
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
|
|
|
|
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
|
|
|
|
|
|
|
def calculate_denoised(self, sigma, model_output, model_input):
|
|
|
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
|
|
return model_input - model_output * sigma
|
|
|
|
|
|
|
|
|
|
|
|
class V_PREDICTION(EPS):
|
|
|
|
def calculate_denoised(self, sigma, model_output, model_input):
|
|
|
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
|
|
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
|
|
|
|
|
|
|
|
|
|
|
class ModelSamplingDiscrete(torch.nn.Module):
|
|
|
|
def __init__(self, model_config=None):
|
|
|
|
super().__init__()
|
|
|
|
beta_schedule = "linear"
|
|
|
|
if model_config is not None:
|
|
|
|
beta_schedule = model_config.beta_schedule
|
|
|
|
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
|
|
|
self.sigma_data = 1.0
|
|
|
|
|
|
|
|
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
|
|
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
|
|
|
if given_betas is not None:
|
|
|
|
betas = given_betas
|
|
|
|
else:
|
|
|
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
|
|
|
alphas = 1. - betas
|
|
|
|
alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32)
|
|
|
|
# alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
|
|
|
|
|
|
|
timesteps, = betas.shape
|
|
|
|
self.num_timesteps = int(timesteps)
|
|
|
|
self.linear_start = linear_start
|
|
|
|
self.linear_end = linear_end
|
|
|
|
|
|
|
|
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
|
|
|
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
|
|
|
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
|
|
|
|
|
|
|
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
|
|
|
|
|
|
|
self.register_buffer('sigmas', sigmas)
|
|
|
|
self.register_buffer('log_sigmas', sigmas.log())
|
|
|
|
|
|
|
|
@property
|
|
|
|
def sigma_min(self):
|
|
|
|
return self.sigmas[0]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def sigma_max(self):
|
|
|
|
return self.sigmas[-1]
|
|
|
|
|
|
|
|
def timestep(self, sigma):
|
|
|
|
log_sigma = sigma.log()
|
|
|
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
|
|
|
return dists.abs().argmin(dim=0).view(sigma.shape)
|
|
|
|
|
|
|
|
def sigma(self, timestep):
|
|
|
|
t = torch.clamp(timestep.float(), min=0, max=(len(self.sigmas) - 1))
|
|
|
|
low_idx = t.floor().long()
|
|
|
|
high_idx = t.ceil().long()
|
|
|
|
w = t.frac()
|
|
|
|
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
|
|
|
return log_sigma.exp()
|
|
|
|
|
|
|
|
def percent_to_sigma(self, percent):
|
|
|
|
return self.sigma(torch.tensor(percent * 999.0))
|
|
|
|
|
|
|
|
def model_sampling(model_config, model_type):
|
|
|
|
if model_type == ModelType.EPS:
|
|
|
|
c = EPS
|
|
|
|
elif model_type == ModelType.V_PREDICTION:
|
|
|
|
c = V_PREDICTION
|
|
|
|
|
|
|
|
s = ModelSamplingDiscrete
|
|
|
|
|
|
|
|
class ModelSampling(s, c):
|
|
|
|
pass
|
|
|
|
|
|
|
|
return ModelSampling(model_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseModel(torch.nn.Module):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
unet_config = model_config.unet_config
|
|
|
|
self.latent_format = model_config.latent_format
|
|
|
|
self.model_config = model_config
|
|
|
|
|
|
|
|
if not unet_config.get("disable_unet_model_creation", False):
|
|
|
|
self.diffusion_model = UNetModel(**unet_config, device=device)
|
|
|
|
self.model_type = model_type
|
|
|
|
self.model_sampling = model_sampling(model_config, model_type)
|
|
|
|
|
|
|
|
self.adm_channels = unet_config.get("adm_in_channels", None)
|
|
|
|
if self.adm_channels is None:
|
|
|
|
self.adm_channels = 0
|
|
|
|
self.inpaint_model = False
|
|
|
|
print("model_type", model_type.name)
|
|
|
|
print("adm", self.adm_channels)
|
|
|
|
|
|
|
|
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
|
|
|
sigma = t
|
|
|
|
xc = self.model_sampling.calculate_input(sigma, x)
|
|
|
|
if c_concat is not None:
|
|
|
|
xc = torch.cat([xc] + [c_concat], dim=1)
|
|
|
|
|
|
|
|
context = c_crossattn
|
|
|
|
dtype = self.get_dtype()
|
|
|
|
xc = xc.to(dtype)
|
|
|
|
t = self.model_sampling.timestep(t).float()
|
|
|
|
context = context.to(dtype)
|
|
|
|
extra_conds = {}
|
|
|
|
for o in kwargs:
|
|
|
|
extra_conds[o] = kwargs[o].to(dtype)
|
|
|
|
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
|
|
|
|
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
|
|
|
|
|
|
|
def get_dtype(self):
|
|
|
|
return self.diffusion_model.dtype
|
|
|
|
|
|
|
|
def is_adm(self):
|
|
|
|
return self.adm_channels > 0
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
return None
|
|
|
|
|
|
|
|
def extra_conds(self, **kwargs):
|
|
|
|
out = {}
|
|
|
|
if self.inpaint_model:
|
|
|
|
concat_keys = ("mask", "masked_image")
|
|
|
|
cond_concat = []
|
|
|
|
denoise_mask = kwargs.get("denoise_mask", None)
|
|
|
|
latent_image = kwargs.get("latent_image", None)
|
|
|
|
noise = kwargs.get("noise", None)
|
|
|
|
device = kwargs["device"]
|
|
|
|
|
|
|
|
def blank_inpaint_image_like(latent_image):
|
|
|
|
blank_image = torch.ones_like(latent_image)
|
|
|
|
# these are the values for "zero" in pixel space translated to latent space
|
|
|
|
blank_image[:,0] *= 0.8223
|
|
|
|
blank_image[:,1] *= -0.6876
|
|
|
|
blank_image[:,2] *= 0.6364
|
|
|
|
blank_image[:,3] *= 0.1380
|
|
|
|
return blank_image
|
|
|
|
|
|
|
|
for ck in concat_keys:
|
|
|
|
if denoise_mask is not None:
|
|
|
|
if ck == "mask":
|
|
|
|
cond_concat.append(denoise_mask[:,:1].to(device))
|
|
|
|
elif ck == "masked_image":
|
|
|
|
cond_concat.append(latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
|
|
|
|
else:
|
|
|
|
if ck == "mask":
|
|
|
|
cond_concat.append(torch.ones_like(noise)[:,:1])
|
|
|
|
elif ck == "masked_image":
|
|
|
|
cond_concat.append(blank_inpaint_image_like(noise))
|
|
|
|
data = torch.cat(cond_concat, dim=1)
|
|
|
|
out['c_concat'] = comfy.conds.CONDNoiseShape(data)
|
|
|
|
adm = self.encode_adm(**kwargs)
|
|
|
|
if adm is not None:
|
|
|
|
out['y'] = comfy.conds.CONDRegular(adm)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def load_model_weights(self, sd, unet_prefix=""):
|
|
|
|
to_load = {}
|
|
|
|
keys = list(sd.keys())
|
|
|
|
for k in keys:
|
|
|
|
if k.startswith(unet_prefix):
|
|
|
|
to_load[k[len(unet_prefix):]] = sd.pop(k)
|
|
|
|
|
|
|
|
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
|
|
|
|
if len(m) > 0:
|
|
|
|
print("unet missing:", m)
|
|
|
|
|
|
|
|
if len(u) > 0:
|
|
|
|
print("unet unexpected:", u)
|
|
|
|
del to_load
|
|
|
|
return self
|
|
|
|
|
|
|
|
def process_latent_in(self, latent):
|
|
|
|
return self.latent_format.process_in(latent)
|
|
|
|
|
|
|
|
def process_latent_out(self, latent):
|
|
|
|
return self.latent_format.process_out(latent)
|
|
|
|
|
|
|
|
def state_dict_for_saving(self, clip_state_dict, vae_state_dict):
|
|
|
|
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict)
|
|
|
|
unet_sd = self.diffusion_model.state_dict()
|
|
|
|
unet_state_dict = {}
|
|
|
|
for k in unet_sd:
|
|
|
|
unet_state_dict[k] = comfy.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k)
|
|
|
|
|
|
|
|
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
|
|
|
|
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict)
|
|
|
|
if self.get_dtype() == torch.float16:
|
|
|
|
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16)
|
|
|
|
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16)
|
|
|
|
|
|
|
|
if self.model_type == ModelType.V_PREDICTION:
|
|
|
|
unet_state_dict["v_pred"] = torch.tensor([])
|
|
|
|
|
|
|
|
return {**unet_state_dict, **vae_state_dict, **clip_state_dict}
|
|
|
|
|
|
|
|
def set_inpaint(self):
|
|
|
|
self.inpaint_model = True
|
|
|
|
|
|
|
|
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0):
|
|
|
|
adm_inputs = []
|
|
|
|
weights = []
|
|
|
|
noise_aug = []
|
|
|
|
for unclip_cond in unclip_conditioning:
|
|
|
|
for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
|
|
|
|
weight = unclip_cond["strength"]
|
|
|
|
noise_augment = unclip_cond["noise_augmentation"]
|
|
|
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
|
|
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
|
|
|
weights.append(weight)
|
|
|
|
noise_aug.append(noise_augment)
|
|
|
|
adm_inputs.append(adm_out)
|
|
|
|
|
|
|
|
if len(noise_aug) > 1:
|
|
|
|
adm_out = torch.stack(adm_inputs).sum(0)
|
|
|
|
noise_augment = noise_augment_merge
|
|
|
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
|
|
|
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
|
|
|
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
|
|
|
|
|
|
|
return adm_out
|
|
|
|
|
|
|
|
class SD21UNCLIP(BaseModel):
|
|
|
|
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
unclip_conditioning = kwargs.get("unclip_conditioning", None)
|
|
|
|
device = kwargs["device"]
|
|
|
|
if unclip_conditioning is None:
|
|
|
|
return torch.zeros((1, self.adm_channels))
|
|
|
|
else:
|
|
|
|
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05))
|
|
|
|
|
|
|
|
def sdxl_pooled(args, noise_augmentor):
|
|
|
|
if "unclip_conditioning" in args:
|
|
|
|
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280]
|
|
|
|
else:
|
|
|
|
return args["pooled_output"]
|
|
|
|
|
|
|
|
class SDXLRefiner(BaseModel):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.embedder = Timestep(256)
|
|
|
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
|
|
|
width = kwargs.get("width", 768)
|
|
|
|
height = kwargs.get("height", 768)
|
|
|
|
crop_w = kwargs.get("crop_w", 0)
|
|
|
|
crop_h = kwargs.get("crop_h", 0)
|
|
|
|
|
|
|
|
if kwargs.get("prompt_type", "") == "negative":
|
|
|
|
aesthetic_score = kwargs.get("aesthetic_score", 2.5)
|
|
|
|
else:
|
|
|
|
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_h])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_w])))
|
|
|
|
out.append(self.embedder(torch.Tensor([aesthetic_score])))
|
|
|
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
|
|
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|
|
|
|
|
|
|
|
class SDXL(BaseModel):
|
|
|
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None):
|
|
|
|
super().__init__(model_config, model_type, device=device)
|
|
|
|
self.embedder = Timestep(256)
|
|
|
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
|
|
|
|
|
|
|
|
def encode_adm(self, **kwargs):
|
|
|
|
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
|
|
|
|
width = kwargs.get("width", 768)
|
|
|
|
height = kwargs.get("height", 768)
|
|
|
|
crop_w = kwargs.get("crop_w", 0)
|
|
|
|
crop_h = kwargs.get("crop_h", 0)
|
|
|
|
target_width = kwargs.get("target_width", width)
|
|
|
|
target_height = kwargs.get("target_height", height)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_h])))
|
|
|
|
out.append(self.embedder(torch.Tensor([crop_w])))
|
|
|
|
out.append(self.embedder(torch.Tensor([target_height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([target_width])))
|
|
|
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
|
|
|
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
|