You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.9 KiB
67 lines
2.9 KiB
1 year ago
|
import torch
|
||
|
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
|
||
|
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
|
||
|
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
|
||
|
import numpy as np
|
||
|
|
||
|
class BaseModel(torch.nn.Module):
|
||
|
def __init__(self, unet_config, v_prediction=False):
|
||
|
super().__init__()
|
||
|
|
||
|
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
|
||
|
self.diffusion_model = UNetModel(**unet_config)
|
||
|
self.v_prediction = v_prediction
|
||
|
if self.v_prediction:
|
||
|
self.parameterization = "v"
|
||
|
else:
|
||
|
self.parameterization = "eps"
|
||
|
if "adm_in_channels" in unet_config:
|
||
|
self.adm_channels = unet_config["adm_in_channels"]
|
||
|
else:
|
||
|
self.adm_channels = 0
|
||
|
print("v_prediction", v_prediction)
|
||
|
print("adm", self.adm_channels)
|
||
|
|
||
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||
|
if given_betas is not None:
|
||
|
betas = given_betas
|
||
|
else:
|
||
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
||
|
alphas = 1. - betas
|
||
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||
|
|
||
|
timesteps, = betas.shape
|
||
|
self.num_timesteps = int(timesteps)
|
||
|
self.linear_start = linear_start
|
||
|
self.linear_end = linear_end
|
||
|
|
||
|
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
|
||
|
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
|
||
|
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
|
||
|
|
||
|
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
|
||
|
if c_concat is not None:
|
||
|
xc = torch.cat([x] + c_concat, dim=1)
|
||
|
else:
|
||
|
xc = x
|
||
|
context = torch.cat(c_crossattn, 1)
|
||
|
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options)
|
||
|
|
||
|
def get_dtype(self):
|
||
|
return self.diffusion_model.dtype
|
||
|
|
||
|
def is_adm(self):
|
||
|
return self.adm_channels > 0
|
||
|
|
||
|
class SD21UNCLIP(BaseModel):
|
||
|
def __init__(self, unet_config, noise_aug_config, v_prediction=True):
|
||
|
super().__init__(unet_config, v_prediction)
|
||
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
|
||
|
|
||
|
class SDInpaint(BaseModel):
|
||
|
def __init__(self, unet_config, v_prediction=False):
|
||
|
super().__init__(unet_config, v_prediction)
|
||
|
self.concat_keys = ("mask", "masked_image")
|